Toggle light / dark theme

Viewers like you help make PBS (Thank you 😃). Support your local PBS Member Station here: https://to.pbs.org/DonateSPACE

Find out how scientists are mapping the black holes throughout the Milky Way and beyond as well as the answer to the Escape the Kugelblitz Challenge Question. Were you able to save humanity?

Get your own Space Time t­shirt at http://bit.ly/1QlzoBi.
Tweet at us! @pbsspacetime.
Facebook: facebook.com/pbsspacetime.
Email us! pbsspacetime [at] gmail [dot] com.
Comment on Reddit: http://www.reddit.com/r/pbsspacetime.

Help translate our videos! https://www.youtube.com/timedtext_cs_panel?tab=2&c=UC7_gcs09iThXybpVgjHZ_7g.

To check out any of the lectures available from Great Courses Plus go to http://ow.ly/Y8lm303oKJe.

SXSW Panel Picker Sign-up: https://panelpicker.sxsw.com/vote/68148

Get your own Space Time t­shirt at http://bit.ly/1QlzoBi.
Tweet at us! @pbsspacetime.
Facebook: facebook.com/pbsspacetime.
Email us! pbsspacetime [at] gmail [dot] com.
Comment on Reddit: http://www.reddit.com/r/pbsspacetime.
Support us on Patreon! http://www.patreon.com/pbsspacetime.

Help translate our videos! https://www.youtube.com/timedtext_cs_panel?tab=2&c=UC7_gcs09iThXybpVgjHZ_7g.

Speaking at the 6th International FQXi Conference, “Mind Matters: Intelligence and Agency in the Physical World.”

The Foundational Questions Institute (FQXi) catalyzes, supports, and disseminates research on questions at the foundations of physics and cosmology, particularly new frontiers and innovative ideas integral to a deep understanding of reality but unlikely to be supported by conventional funding sources.

Please join us at www.fqxi.org!

Have you ever experimented with food dye? It can make cooking a lot more fun, and provides a great example of how two fluids can mix together well—or not much at all.

Add a small droplet in water and you might see it slowly dissolve in the larger liquid. Add a few more drops and perhaps you’ll see a wave of color spread, the colored droplets spreading and breaking apart to diffuse more thoroughly. Add a spoon and begin stirring quickly, and you’ll probably find that the water fully changes color, as desired.

Researchers at the USC Viterbi School of Engineering, led by Ivan Bermejo-Moreno, assistant professor of aerospace and mechanical engineering, studied a similar phenomenon with gases at , with an eye toward more efficient mixing to support supersonic scramjet engines. In the study, published in Physics of Fluids, USC Viterbi Ph.D. Jonas Buchmeier, along with Xiangyu Gao (USC Viterbi Ph.D. ‘20) and former visiting M.Sc. student Alexander Bußmann (Technical University Munich), developed a novel tracking method that zoomed in on the fundamentals of how mixing happens. The study helps understand, for example, how injected interacts with the surrounding oxidizers (air) in the to make it operate optimally, or how interstellar gases mix after a supernova explosion to form . The method focuses on the geometric and physical properties of the turbulent swirling motions of gases and how they change shape over time as they mix.

Learn More about Brilliant: https://brilliant.org/SpaceTime/

Take the PBS Digital Studios audience survey: https://to.pbs.org/2021survey.

Black holes are a paradox. They are paradoxical because they simultaneously must exist but can’t, and so they break physics as we know it. Many physicists will tell you that the best way to fix broken physics is with string. String theory, in fact. And in the black holes of string theory — fuzzballs — are perhaps even weirder than the regular type.

Sign Up on Patreon to get access to the Space Time Discord!

There’s a mysteriously shaped cluster of stars at the center of the Andromeda Galaxy, around 2.5 million light-years away and neighbor to the Milky Way. It’s been causing astronomers to furrow their brows and stroke their chins for decades at this point.

However, new research into how galaxies – and the supermassive black holes at their centers – can collide together may offer an explanation for this cluster. It seems that it might be caused by a gravitational ‘kick’, something similar to the recoil of a shotgun but on a cosmic scale.

This latest study suggests the kick would be powerful enough to create an elongated mass of millions of stars – technically known as an eccentric nuclear disk – instead of the sort of symmetric star cluster that would typically be in the center of a galaxy like Andromeda.

Today, the greatest mysteries facing astronomers and cosmologists are the roles gravitational attraction and cosmic expansion play in the evolution of the Universe.

To resolve these mysteries, astronomers and cosmologists are taking a two-pronged approach. These consist of directly observing the cosmos to observe these forces at work while attempting to find theoretical resolutions for observed behaviors – such as dark matter and dark energy.

In between these two approaches, scientists model cosmic evolution with computer simulations to see if observations align with theoretical predictions. The latest of which is AbacusSummit, a simulation suite created by the Flatiron Institute’s Center for Computational Astrophysics (CCA) and the Harvard-Smithsonian Center for Astrophysics (CfA).