Menu

Blog

Archive for the ‘cosmology’ category: Page 245

Jun 29, 2021

A New Type of Cataclysmic Event in the Cosmos: Astrophysicists Detect First Black Hole-Neutron Star Mergers

Posted by in categories: cosmology, physics

Mix pair is “elusive missing piece of the family picture of compact object mergers.”

A long time ago, in two galaxies about 900 million light-years away, two black holes each gobbled up their neutron star companions, triggering gravitational waves that finally hit Earth in January 2020.

Discovered by an international team of astrophysicists including Northwestern University researchers, two events — detected just 10 days apart — mark the first-ever detection of a black hole merging with a neutron star. The findings will enable researchers to draw the first conclusions about the origins of these rare binary systems and how often they merge.

Jun 29, 2021

Rare black hole and neutron star collisions sighted twice in 10 days

Posted by in category: cosmology

Separate collisions of a neutron star and a black hole are detected in a short space of time.

Jun 28, 2021

Discovery of a New Type of Stellar Explosion – An Electron-Capture Supernova – Illuminates a Medieval Mystery

Posted by in category: cosmology

A team led by astronomers at UC Santa Barbara have confirmed the existence of an elusive new type of supernova.

A worldwide team led by UC Santa Barbara scientists at Las Cumbres Observatory has discovered the first convincing evidence for a new type of stellar explosion — an electron-capture supernova. While they have been theorized for 40 years, real-world examples have been elusive. They are thought to arise from the explosions of massive super-asymptotic giant branch (SAGB) stars, for which there has also been scant evidence. The discovery, published in Nature Astronomy, also sheds new light on the thousand-year mystery of the supernova from A.D. 1054 that was visible all over the world in the daytime, before eventually becoming the Crab Nebula.

Historically, supernovae have fallen into two main types: thermonuclear and iron-core collapse. A thermonuclear supernova is the explosion of a white dwarf star after it gains matter in a binary star system. These white dwarfs are the dense cores of ash that remain after a low-mass star (one up to about 8 times the mass of the sun) reaches the end of its life. An iron core-collapse supernova occurs when a massive star — one more than about 10 times the mass of the sun — runs out of nuclear fuel and its iron core collapses, creating a black hole or neutron star. Between these two main types of supernovae are electron-capture supernovae. These stars stop fusion when their cores are made of oxygen, neon and magnesium; they aren’t massive enough to create iron.

Jun 27, 2021

Thousands of physicists are working together to redefine the cosmos

Posted by in categories: cosmology, particle physics

The Large Hadron Collider has a lot of tasks ahead of it. Next stop: investigating the Big Bang.


The truth is, we don’t really know because it takes huge amounts of energy and precision to recreate and understand the cosmos on such short timescales in the lab.

But scientists at the Large Hadron Collider (LHC) at CERN, Switzerland aren’t giving up.

Continue reading “Thousands of physicists are working together to redefine the cosmos” »

Jun 26, 2021

A massive protocluster of merging galaxies in the early universe

Posted by in categories: cosmology, evolution

Submillimeter galaxies (SMGs) are a class of the most luminous, distant, and rapidly star-forming galaxies known and can shine brighter than a trillion Suns (about one hundred times more luminous in total than the Milky Way). They are generally hard to detect in the visible, however, because most of their ultraviloet and optical light is absorbed by dust which in turn is heated and radiates at submillimeter wavelengths—the reason they are called submillimeter galaxies. The power source for these galaxies is thought to be high rates of star formation, as much as one thousand stars per year (in the Milky Way, the rate is more like one star per year). SMGs typically date from the early universe; they are so distant that their light has been traveling for over ten billion years, more than 70% of the lifetime of the universe, from the epoch about three billion years after the big bang. Because it takes time for them to have evolved, astronomers think that even a billion years earlier they probably were actively making stars and influencing their environments, but very little is known about this phase of their evolution.

SMGs have recently been identified in galaxy protoclusters, groups of dozens of galaxies in the universe when it was less than a few billion years old. Observing massive SMGs in these distant protoclusters provides crucial details for understanding both their early evolution and that of the larger structures to which they belong. CfA astronomers Emily Pass and Matt Ashby were members of a team that used infrared and from the Spitzer IRAC and Gemini-South instruments, respectively, to study a previosly identified protocluster, SPT2349-56, in the era only 1.4 billion years after the big bang. The protocluster was spotted by the South Pole Telescope millimeter wavelengths and then observed in more detail with Spitzer, Gemini, and the ALMA submillimeter array.

The protocluster contains a remarkable concentration of fourteen SMGs, nine of which were detected by these optical and infrared observations. The astronomers were then able to estimate the , ages, and gas content in these SMGs, as well as their star formation histories, a remarkable acheievment for such distant objects. Among other properties of the protocluster, the scientists deduce that its total mass is about one trillion solar-masses, and its galaxies are making stars in a manner similar to star formation processes in the current universe. They also conclude that the whole ensemble is probably in the midst of a colossal merger.

Jun 26, 2021

The Early Universe Explained by Neil deGrasse Tyson

Posted by in categories: cosmology, information science, mathematics, neuroscience, nuclear energy, particle physics, singularity

Neil deGrasse Tyson explains the early state of our Universe. At the beginning of the universe, ordinary space and time developed out of a primeval state, where all matter and energy of the entire visible universe was contained in a hot, dense point called a gravitational singularity. A billionth the size of a nuclear particle.

While we can not imagine the entirety of the visible universe being a billion times smaller than a nuclear particle, that shouldn’t deter us from wondering about the early state of our universe. However, dealing with such extreme scales is immensely counter-intuitive and our evolved brains and senses have no capacity to grasp the depths of reality in the beginning of cosmic time. Therefore, scientists develop mathematical frameworks to describe the early universe.

Continue reading “The Early Universe Explained by Neil deGrasse Tyson” »

Jun 26, 2021

Strange Ghostly Galaxies Lacking Dark Matter Confirmed

Posted by in category: cosmology

The most accurate distance measurement yet of ultra-diffuse galaxy (UDG) NGC1052-DF2 (DF2) confirms beyond any shadow of a doubt that it is lacking in dark matter. The newly measured distance of 22.1 +/-1.2 megaparsecs was obtained by an international team of researchers led by Zili Shen and Pieter van Dokkum of Yale University and Shany Danieli, a NASA Hubble Fellow at the Institute for Advanced Study.

“Determining an accurate distance to DF2 has been key in supporting our earlier results,” stated Danieli. “The new measurement reported in this study has crucial implications for estimating the physical properties of the galaxy, thus confirming its lack of dark matter.”

The results, published in Astrophysical Journal Letters on June 9, 2021, are based on 40 orbits of NASA’s Hubble Space Telescope, with imaging by the Advanced Camera for Surveys and a “tip of the red giant branch” (TRGB) analysis, the gold standard for such refined measurements. In 2019, the team published results measuring the distance to neighboring UDG NGC1052-DF4 (DF4) based on 12 Hubble orbits and TRGB analysis, which provided compelling evidence of missing dark matter. This preferred method expands on the team’s 2018 studies that relied on “surface brightness fluctuations” to gauge distance. Both galaxies were discovered with the Dragonfly Telephoto Array at the New Mexico Skies observatory.

Jun 25, 2021

Record breaker: Scientists spot earliest known supermassive black hole ‘storm’

Posted by in category: cosmology

A massive maelstrom that raged in the universe’s youth could help scientists better understand how galaxies and their central black holes interact.

Most, if not all, galaxies harbor a supermassive black hole at their core. Our own Milky Way has one, for example — a behemoth known as Sagittarius A*, which is about as massive as 4.3 million suns.

Jun 24, 2021

Giant lasers help re-create supernovas’ explosive, mysterious physics

Posted by in categories: cosmology, particle physics

Learning the results sparked a moment of joyous celebration, Park says: high fives to everyone.

“This is some of the first experimental evidence of the formation of these collisionless shocks,” says plasma physicist Francisco Suzuki-Vidal of Imperial College London, who was not involved in the study. “This is something that has been really hard to reproduce in the laboratory.”

Continue reading “Giant lasers help re-create supernovas’ explosive, mysterious physics” »

Jun 23, 2021

Cosmic filaments may be the biggest spinning objects in space

Posted by in category: cosmology

Filaments of dark matter and galaxies, which can stretch millions of light-years, might help astronomers figure out the origins of cosmic spin.