Toggle light / dark theme

Distance, Mass, and Advanced Observations

To refine the measurements of Cygnus X-1, astronomers used parallax—a technique that calculates stellar distances based on their apparent motion against the backdrop of distant stars as Earth orbits the Sun. Using the Very Long Baseline Array (VLBA), a network of 10 radio telescopes across the United States, researchers tracked the system’s full orbit over six days. They determined that the black hole lies about 7,200 light-years from Earth, significantly farther than the previous estimate of 6,000 light-years.

This updated distance means its blue supergiant companion star is also more massive and brighter than expected, with a mass 40 times that of the Sun. Combined with the black hole’s orbital period, these findings provided the recalculated mass of Cygnus X-1’s black hole.

Researchers have documented a rare supernova, 2023ufx, the most metal-poor stellar explosion observed, located in a dwarf galaxy.

This finding is crucial as it mirrors the early universe’s conditions, aiding astronomers in understanding galaxy formation and evolution.

Discovery of a Unique Supernova.

NASAs new Landolt mission, launching in 2029, will orbit an artificial star around Earth to enhance stellar and planetary measurements.

This will improve the accuracy of stellar brightness calculations by over ten times, aiding in our understanding of planets orbiting these stars and providing insights into dark energy.

The Landolt Mission

Currently, dark matter detection requires specialized laboratories with costly equipment. ODIN has the potential to overcome this limitation.

“ODIN’s sensitivity is primarily dependent on phonon density rather than target volume, in contrast to existing systems. This feature may enable compact, low-cost detectors, with the ability to perform lock-in dark matter detection by periodically depopulating the phonon mode,” the study authors explain.

Moreover, the proposed device design features only one optomechanical cavity. Instruments with multiple cavities could result in more exciting results.

The universe is a stage filled with extreme phenomena, where temperatures and energies reach unimaginable levels. In this context, there are objects such as supernova remnants, pulsars, and active galactic nuclei that generate charged particles and gamma rays with energies far exceeding those involved in nuclear processes like fusion within stars. These particles, as direct witnesses of extreme cosmic processes, offer key insights into the workings of the universe.

Gamma rays, for instance, have the ability to traverse space without being altered, providing direct information about their sources of origin. However, charged particles, known as cosmic rays, face a more complex journey. When interacting with the omnipresent magnetic fields of the cosmos, these particles are deflected and lose part of their energy, especially high-energy electrons and positrons, referred to as cosmic-ray electrons (CRe). With energies surpassing one teraelectronvolt (TeV)—a thousand times more than visible light— these particles gradually fade away, complicating the identification of their point of origin.

Detecting high-energy particles such as CRe is a monumental task. Space instruments, with their limited detection areas, fail to capture sufficient particles at these extreme energies. On the other hand, ground-based observatories face an additional challenge: distinguishing particle cascades triggered by cosmic-ray electrons from the far more frequent ones generated by protons and heavier cosmic-ray nuclei.

New observations from the James Webb Space Telescope suggest that a new feature in the universe—not a flaw in telescope measurements—may be behind the decade-long mystery of why the universe is expanding faster today than it did in its infancy billions of years ago.

The new data confirms Hubble Space Telescope measurements of distances between and galaxies, offering a crucial cross-check to address the mismatch in measurements of the universe’s mysterious expansion. Known as the Hubble tension, the discrepancy remains unexplained even by the best cosmology models.

“The discrepancy between the observed expansion rate of the universe and the predictions of the standard model suggests that our understanding of the universe may be incomplete. With two NASA flagship telescopes now confirming each other’s findings, we must take this [Hubble tension] problem very seriously—it’s a challenge but also an incredible opportunity to learn more about our universe,” said Nobel laureate and lead author Adam Riess, a Bloomberg Distinguished Professor and Thomas J. Barber Professor of Physics and Astronomy at Johns Hopkins University.

I have my own introduction to quantum mechanics course that you can check out on Brilliant! First 30 days are free and 20% off the annual premium subscription when you use our link ➜ https://brilliant.org/sabine.

“New physics” is a catch-all term for fundamentally new discoveries in physics (such as dark matter, quantum gravity, or a theory of everything) which push the boundaries of how we understand our reality. How could new discoveries in these areas of research affect our lives? Let’s take a look at what knowledge and practical use we could potentially gain.

🤓 Check out my new quiz app ➜ http://quizwithit.com/
💌 Support me on Donorbox ➜ https://donorbox.org/swtg.
📝 Transcripts and written news on Substack ➜ https://sciencewtg.substack.com/
👉 Transcript with links to references on Patreon ➜ / sabine.
📩 Free weekly science newsletter ➜ https://sabinehossenfelder.com/newsle
👂 Audio only podcast ➜ https://open.spotify.com/show/0MkNfXl
🔗 Join this channel to get access to perks ➜
/ @sabinehossenfelder.
🖼️ On instagram ➜ / sciencewtg.

#science #physics

Sean Michael Carroll (born 5 October 1966) is a cosmologist and Physics professor specializing in dark energy and general relativity. He is a research professor in the Department of Physics at the California Institute of Technology. He has been a contributor to the physics blog Cosmic Variance, and has published in scientific journals and magazines such as Nature, Seed, Sky \& Telescope, and New Scientist.
https://en.wikipedia.org/wiki/Sean_M

Other videos related to challenging or debunking the fine tuning argument

• Video.

A Rebuttal to the Fine-Tuning Argument.

Scientists in Australia have gathered evidence that our universe is constantly vibrating. They used the largest gravitational wave detector to confirm the earlier reports that there is an ongoing rumble which is likely caused by black holes at the centre of galaxies colliding with each other.

The detector looked at several rapidly spinning neutron stars across the galaxy and discovered that the gravitational wave background might be louder than previously thought, The Conversation reported.

The study carried out by Matthew Miles, Swinburne University of Technology and Rowina Nathan, Monash University, was published in the Monthly Notices of the Royal Astronomical Society.