Menu

Blog

Archive for the ‘cosmology’ category: Page 178

Nov 21, 2021

How Did the First Atom Form? Where did it come from? | Big Bang Nucleosynthesis

Posted by in categories: cosmology, particle physics, quantum physics

Special offer for ArvinAsh viewers — Go to: https://brilliant.org/arvinash — you can sign up for free! The first 200 people will get 20% off their annual membership.

Background videos:
Fundamental forces: https://youtu.be/669QUJrF4u0
Electroweak theory: https://youtu.be/u05VK0pSc7I
Is Big Bang hidden in gravity waves: https://youtu.be/VXr1mzY2GnY
Cosmic Microwave background: https://youtu.be/XcXCrFIivyk.

Continue reading “How Did the First Atom Form? Where did it come from? | Big Bang Nucleosynthesis” »

Nov 21, 2021

How we could Time Travel through a (special) black hole — Back to the PAST!

Posted by in categories: cosmology, information science, singularity, space travel, time travel

Get your SPECIAL OFFER for MagellanTV here: https://try.magellantv.com/arvinash — It’s an exclusive offer for our viewers! Start your free trial today. MagellanTV is a new kind of streaming service run by filmmakers with 3,000+ documentaries! Check out our personal recommendation and MagellanTV’s exclusive playlists: https://www.magellantv.com/genres/science-and-tech.

Chapters.
0:00 — You are a time traveler.
2:32 — Spacetime & light cone review.
6:15 — Flat Spacetime equations.
7:03 — Schwarzschild radius, metric.
8:42 — Light cone near a black hole.
10:15 — How to escape black hole.
10:39 — Kerr-Newman metric.
11:34 — How to remove the event horizon.
11:50 — What is a naked singularity.
12:20 — How to travel back in time.
13:26 — Problems.

Continue reading “How we could Time Travel through a (special) black hole — Back to the PAST!” »

Nov 21, 2021

Understanding the early universe depends on estimating the lifespan of neutrons

Posted by in categories: cosmology, physics

When we look into the night sky, we see the universe as it once was. We know that in the past, the universe was once warmer and denser than it is now. When we look deep enough into the sky, we see the microwave remnant of the big bang known as the cosmic microwave background. That marks the limit of what we can see. It marks the extent of the observable universe from our vantage point.

The cosmic background we observe comes from a time when the universe was already about 380,000 years old. We can’t directly observe what happened before that. Much of the earlier period is fairly well understood given what we know about physics, but the earliest moments of the big bang remain a bit of a mystery. According to the , the earliest moments of the universe were so hot and dense that even the fundamental forces of the acted differently than they do now. To better understand the big bang, we need to better understand these forces.

One of the more difficult forces to understand is the . Unlike more familiar forces such as gravity and electromagnetism, the weak is mostly seen through its effect of radioactive decay. So we can study the weak by measuring the rate at which things decay. But there’s a problem when it comes to neutrons.

Nov 20, 2021

Why Is The Universe Out Of Balance?

Posted by in categories: cosmology, media & arts

Claim your SPECIAL OFFER for MagellanTV here: https://try.magellantv.com/historyoftheuniverse. Start your free trial TODAY so you can watch Solar Superstorms 4K, and the rest of MagellanTV’s science collection: https://www.magellantv.com/video/solar-superstorms-4k.

Researched and Written by JD Voyek.
Narrated and Edited by David Kelly.
Thumbnail Art by Ettore Mazza.

Continue reading “Why Is The Universe Out Of Balance?” »

Nov 20, 2021

Will Wormholes Allow Fast Interstellar Travel?

Posted by in category: cosmology

PBS Member Stations rely on viewers like you. To support your local station, go to: http://to.pbs.org/DonateSPACE
↓ More info below ↓

Sign Up on Patreon to get access to the Space Time Discord!
https://www.patreon.com/pbsspacetime.

Continue reading “Will Wormholes Allow Fast Interstellar Travel?” »

Nov 20, 2021

How to See Black Holes + Kugelblitz Challenge Answer | Space Time | PBS Digital Studios

Posted by in categories: cosmology, mapping, physics

Viewers like you help make PBS (Thank you 😃). Support your local PBS Member Station here: https://to.pbs.org/DonateSPACE

Find out how scientists are mapping the black holes throughout the Milky Way and beyond as well as the answer to the Escape the Kugelblitz Challenge Question. Were you able to save humanity?

Continue reading “How to See Black Holes + Kugelblitz Challenge Answer | Space Time | PBS Digital Studios” »

Nov 20, 2021

Should We Build a Dyson Sphere? | Space Time | PBS Digital Studios

Posted by in categories: cosmology, physics

To check out any of the lectures available from Great Courses Plus go to http://ow.ly/Y8lm303oKJe.

SXSW Panel Picker Sign-up: https://panelpicker.sxsw.com/vote/68148

Continue reading “Should We Build a Dyson Sphere? | Space Time | PBS Digital Studios” »

Nov 20, 2021

Joscha Bach — Reconciling consciousness with physicalism

Posted by in categories: cosmology, neuroscience, physics

Speaking at the 6th International FQXi Conference, “Mind Matters: Intelligence and Agency in the Physical World.”

The Foundational Questions Institute (FQXi) catalyzes, supports, and disseminates research on questions at the foundations of physics and cosmology, particularly new frontiers and innovative ideas integral to a deep understanding of reality but unlikely to be supported by conventional funding sources.

Continue reading “Joscha Bach — Reconciling consciousness with physicalism” »

Nov 19, 2021

Black hole breakthrough as universe’s 10bn-year-old ‘missing link’ found by astronomers

Posted by in categories: cosmology, innovation

A BLACK HOLE breakthrough has been made after experts spotted what is being dubbed as a “missing link” in understanding the universe.

Nov 19, 2021

New tracking method in high-powered jet engines paves the way for optimal combustion

Posted by in categories: cosmology, engineering

Have you ever experimented with food dye? It can make cooking a lot more fun, and provides a great example of how two fluids can mix together well—or not much at all.

Add a small droplet in water and you might see it slowly dissolve in the larger liquid. Add a few more drops and perhaps you’ll see a wave of color spread, the colored droplets spreading and breaking apart to diffuse more thoroughly. Add a spoon and begin stirring quickly, and you’ll probably find that the water fully changes color, as desired.

Researchers at the USC Viterbi School of Engineering, led by Ivan Bermejo-Moreno, assistant professor of aerospace and mechanical engineering, studied a similar phenomenon with gases at , with an eye toward more efficient mixing to support supersonic scramjet engines. In the study, published in Physics of Fluids, USC Viterbi Ph.D. Jonas Buchmeier, along with Xiangyu Gao (USC Viterbi Ph.D. ‘20) and former visiting M.Sc. student Alexander Bußmann (Technical University Munich), developed a novel tracking method that zoomed in on the fundamentals of how mixing happens. The study helps understand, for example, how injected interacts with the surrounding oxidizers (air) in the to make it operate optimally, or how interstellar gases mix after a supernova explosion to form . The method focuses on the geometric and physical properties of the turbulent swirling motions of gases and how they change shape over time as they mix.