Menu

Blog

Archive for the ‘cosmology’ category: Page 176

Aug 16, 2021

Radioactive New Clues to the Formation of Our Solar System From Nearby Stellar Nursery

Posted by in category: cosmology

The Ophiuchus star-forming complex offers an analog for the formation of the solar system, including the sources of elements found in primitive meteorites.

A region of active star formation in the constellation Ophiuchus is giving astronomers new insights into the conditions in which our own solar system was born. In particular, a new study of the Ophiuchus star-forming complex shows how our solar system may have become enriched with short-lived radioactive elements.

Evidence of this enrichment process has been around since the 1970s, when scientists studying certain mineral inclusions in meteorites concluded that they were pristine remnants of the infant solar system and contained the decay products of short-lived radionuclides. These radioactive elements could have been blown onto the nascent solar system by a nearby exploding star (a supernova) or by the strong stellar winds from a type of massive star known as a Wolf-Rayet star.

Aug 15, 2021

The bonkers connection between massive black holes and dark matter

Posted by in categories: cosmology, physics

But a team of physicists is proposing a radical idea: Instead of forming black holes through the usual death-of-a-massive-start route, giant dark matter halos directly collapsed, forming the seeds of the first great black holes.

Supermassive black holes (SMBHs) appear early in the history of the universe, as little as a few hundred million years after the Big Bang. That rapid appearance poses a challenge to conventional models of SMBH birth and growth because it doesn’t look like there can be enough time for them to grow so massive so quickly.

Continue reading “The bonkers connection between massive black holes and dark matter” »

Aug 11, 2021

Runaway star caught streaking across Milky Way at 2 million mph … in the wrong direction

Posted by in category: cosmology

Astronomers say a weird star careening through the Milky Way could have survived the explosive powers of a supernova.

Aug 10, 2021

Bizarre, Metallic Star Spotted Hurtling Out of the Milky Way at 2 Million Miles an Hour

Posted by in category: cosmology

About 2,000 light-years away from Earth, there is a star catapulting toward the edge of the Milky Way. This particular star, known as LP 40–365, is one of a unique breed of fast-moving stars—remnant pieces of massive white dwarf stars—that have survived in chunks after a gigantic stellar explosion.

“This star is moving so fast that it’s almost certainly leaving the galaxy…[it’s] moving almost two million miles an hour,” says JJ Hermes, Boston University College of Arts & Sciences assistant professor of astronomy. But why is this flying object speeding out of the Milky Way? Because it’s a piece of shrapnel from a past explosion—a cosmic event known as a supernova—that’s still being propelled forward.

Aug 9, 2021

Missing Neutrons May Lead a Secret Life as Dark Matter

Posted by in category: cosmology

Circa 2,018 o,.o.


This may be the reason experiments can’t agree on the neutron lifetime, according to a new idea.

Aug 5, 2021

Quantum Crystal With “Time Reversal” Could Be a New Dark Matter Sensor

Posted by in categories: cosmology, particle physics, quantum physics

Physicists at the National Institute of Standards and Technology (NIST) have linked together, or “entangled,” the mechanical motion and electronic properties of a tiny blue crystal, giving it a quantum edge in measuring electric fields with record sensitivity that may enhance understanding of the universe.

The quantum sensor consists of 150 beryllium ions (electrically charged atoms) confined in a magnetic field, so they self-arrange into a flat 2D crystal just 200 millionths of a meter in diameter. Quantum sensors such as this have the potential to detect signals from dark matter — a mysterious substance that might turn out to be, among other theories, subatomic particles that interact with normal matter through a weak electromagnetic field. The presence of dark matter could cause the crystal to wiggle in telltale ways, revealed by collective changes among the crystal’s ions in one of their electronic properties, known as spin.

As described in the August 6, 2021, issue of Science, researchers can measure the vibrational excitation of the crystal — the flat plane moving up and down like the head of a drum — by monitoring changes in the collective spin. Measuring the spin indicates the extent of the vibrational excitation, referred to as displacement.

Aug 5, 2021

Light bending and X-ray echoes from behind a supermassive black hole

Posted by in category: cosmology

One of the key predictions of general relativity, the bending of light around massive, compact objects, is observed for a supermassive black hole in the galaxy I Zwicky 1.

Aug 5, 2021

What the NEW black hole discovery tells us!

Posted by in categories: cosmology, physics

Astronomers have seen light from BEHIND a black hole for the first time. I explained the discovery and results to my editor, Levi. Congrats to D. Wilkins and the astronomy team!

Tap dat Patreon → https://www.patreon.com/physicsgirl.

Continue reading “What the NEW black hole discovery tells us!” »

Aug 4, 2021

New Shape Opens ‘Wormhole’ Between Numbers and Geometry

Posted by in categories: cosmology, mathematics

Mathematicians have proved that a geometric object called the Fargues-Fontaine curve can connect arithmetic and geometry. The work is a major advance in one of the most ambitious projects in mathematics.


The grandest project in mathematics has received a rare gift, in the form of a mammoth 350-page paper posted in February that will change the way researchers around the world investigate some of the field’s deepest questions. The work fashions a new geometric object that fulfills a bold, once fanciful dream about the relationship between geometry and numbers.

Continue reading “New Shape Opens ‘Wormhole’ Between Numbers and Geometry” »

Aug 3, 2021

Black holes born with magnetic fields quickly shed them

Posted by in categories: computing, cosmology

Like a shaggy dog in springtime, some black holes have to shed. New computer simulations reveal how black holes might discard their magnetic fields.

Unlike dogs with their varied fur coats, isolated black holes are mostly identical. They are characterized by only their mass, spin and electric charge. According to a rule known as the no-hair theorem, any other distinguishing characteristics, or “hair,” are quickly cast off. That includes magnetic fields.

The rule applies to black holes in a vacuum, where magnetic fields can simply slip away. But, says astrophysicist Ashley Bransgrove of Columbia University, “what we were thinking about is what happens in a more realistic scenario.” A magnetized black hole would typically be surrounded by electrically charged matter called plasma, and scientists didn’t know how — or even if — such black holes would undergo hair loss.