Toggle light / dark theme

Gravity-Defying Breakthrough: Floating Sensor Unmasks Dark Energy’s Secrets

Scientists have made a groundbreaking leap in detecting dark energy by developing a magnetically levitated precision force system.

Their experiments vastly surpassed previous methods, reaching a new level of precision that opens up unexplored realms of dark energy research. The work was so impactful it earned a featured highlight in Nature Astronomy.

Breakthrough in Dark Energy Detection.

JWST Completes a Huge Survey of the Earliest Galaxies

This extensive catalog spanning 11 billion years of cosmic history allows scientists to compare ancient galaxy structures with more recent ones, revealing evolutionary patterns in galaxy groups and their brightest central galaxies. The observations show a dramatic transformation: distant galaxies from the early universe appear irregular with active star formation, while those closer to our time have “quenched” star formation and developed more organised elliptical or spiral structures.

This groundbreaking JWST survey marks the beginning of a new era in understanding galactic evolution. With 1,700 galaxy groups identified across nearly the entire history of our universe, astronomers now have an unprecedented roadmap for further investigation. Future studies will explore the physics driving these transformations—from dark matter’s role in structural formation to how supermassive black holes influence their host galaxies. As researchers analyze this rich data, we can expect significant revisions to existing theories about galaxy formation and evolution.

Cosmic CT Scan Uncovers a Surprising Twist in the Universe’s Evolution

Over billions of years, the universe has transformed from a simpler state into an intricate cosmic web, but new research hints that the growth of cosmic structures may not have unfolded exactly as predicted.

Using data from the Atacama Cosmology Telescope and the Dark Energy Spectroscopic Instrument, scientists compared ancient cosmic light with the modern distribution of galaxies, essentially creating a multidimensional cosmic timeline. Their findings reveal a slight but intriguing discrepancy: matter appears to be a bit less “clumpy” today than early models anticipated. While not definitive enough to rewrite physics, this subtle irregularity opens exciting possibilities about the mysterious forces, like dark energy, that could be subtly reshaping the universe.

The Cosmic Dance of Matter.

NASA’s new Roman mission reveals plans for space telescope to survey space and unlock universe mysteries

The NASA team behind the Nancy Grace Roman Space Telescope – due to launch in 2027 – have shared the designs for the mission’s 3 core surveys.

Roman will deepen understanding into the mysteries of astrophysics and the universe.

“Roman’s setting out to do wide, deep surveys of the universe in a way that will help us answer questions about how dark energy and dark matter govern cosmic evolution, and the demographics of worlds beyond our solar system,” says Gail Zasowski, an associate professor at the University of Utah, US, and co-chair of the Roman Observations Time Allocation Committee (ROTAC).

Scientists release underground dark matter experiment design

Researchers, students and science-lovers across the world now have access to the design of the globally significant SABRE South dark matter experiment in the lead up to its installation in the Stawell Underground Physics Laboratory.

The SABRE South Technical Design Report Executive Summary” was published in the Journal of Instrumentation in April.

The paper, published by the SABRE Collaboration, details the aims of the SABRE South experiment, which will provide data from the Southern Hemisphere to corroborate results seen in the DAMA/LIBRA Collaboration in Italy.

Combing Through the Sun’s Corona for Dark Matter

Researchers have turned NASA’s Parker Solar Probe into a dark-matter detector, taking advantage of its close encounters with the Sun to search for dark-photon signals.

Dark matter is an elusive but consequential substance. It accounts for 27% of the total energy content of the Universe and plays a crucial role in the formation of cosmic structures, acting as the skeleton for the “cosmic web” of galaxies [1]. However, its nongravitational interactions with known particles remain a mystery. Among the many types of dark-matter particles that have been proposed, a compelling candidate is the ultralight dark photon [2]. Just as the photon mediates the electromagnetic force between electrically charged particles, the dark photon would mediate interactions between a hypothetical set of dark particles. Researchers have previously looked for dark photons using lab-based particle detectors and Earth-bound telescopes. But now Haipeng An from Tsinghua University in China and his colleagues have utilized a unique vantage point next to the Sun to search for a dark-photon signal [3].