Toggle light / dark theme

Engineers at MIT have built a three-fingered robotic hand that can identify and safely grasp delicate objects by relying on an increasingly popular approach to making robots useful: making them soft.

Human hands are not easy for robotics engineers to emulate. The simple act of picking up an item involves all kinds of abilities that humans don’t notice. Among other things, our grip has to be secure without crushing the thing we’re grasping, and our fingers have to form shapes that can fit many types of objects — everything from a sheet of paper or a piece of fruit to a pencil or a living thing.

Researchers at MIT’s Computer Science and Artificial Intelligence Laboratory designed a soft silicone “hand” with embedded sensors that they can train to recognize different things. The team will present its research at this month’s International Conference on Intelligent Robots and Systems in Hamburg, Germany.

Read more

The brand new space opera novel Lightless is a fast-paced, gripping read, and like all good science fiction, explores the human side of cutting-edge scientific concepts. We talked to debut author C.A. Higgins about using real physics in her story.

In Lightless, a prototype spaceship on its maiden voyage on behalf of a totalitarian regime is infiltrated by escaped terrorists. And it’s up to Althea, a socially awkward computer scientist who prefers the company of the Ananke’s disturbingly sentient electronic system to that of her crewmates, to save the day as her well-ordered world begins to unravel.

http://www.amazon.com/Lightless-C-A-Higgins/dp/0553394428?ta…9236004136

Read more

This schematic shows the components of the optical rectenna developed at the Georgia Institute of Technology (credit: Thomas Bougher, Georgia Tech)

Using nanometer-scale components, Georgia Institute of Technology researchers have demonstrated the first optical rectenna, a device that combines the functions of an antenna and a rectifier diode to convert light directly into DC current.

Read more

Although it was made in 1968, to many people, the renegade HAL 9000 computer in the film 2001: A Space Odyssey still represents the potential danger of real-life artificial intelligence. However, according to Mathematician, Computer Visionary and Author Dr. John MacCormick, the scenario of computers run amok depicted in the film – and in just about every other genre of science fiction – will never happen.

“Right from the start of computing, people realized these things were not just going to be crunching numbers, but could solve other types of problems,” MacCormick said during a recent interview with TechEmergence. “They quickly discovered computers couldn’t do things as easily as they thought.”

While MacCormick is quick to acknowledge modern advances in artificial intelligence, he’s also very conscious of its ongoing limitations, specifically replicating human vision. “The sub-field where we try to emulate the human visual system turned out to be one of the toughest nuts to crack in the whole field of AI,” he said. “Object recognition systems today are phenomenally good compared to what they were 20 years ago, but they’re still far, far inferior to the capabilities of a human.”

To compensate for its limitations, MacCormick notes that other technologies have been developed that, while they’re considered by many to be artificially intelligent, don’t rely on AI. As an example, he pointed to Google’s self-driving car. “If you look at the Google self-driving car, the AI vision systems are there, but they don’t rely on them,” MacCormick said. “In terms of recognizing lane markings on the road or obstructions, they’re going to rely on other sensors that are more reliable, such as GPS, to get an exact location.”

Although it may not specifically rely on AI, MacCormick still believes that with new and improved algorithms emerging all the time, self-driving cars will eventually become a very real part of our daily fabric. And the incremental gains being achieved to make real AI systems won’t be limited to just self-driving cars. “One of the areas where we’re seeing pretty consistent improvement is translation of human languages,” he said. “I believe we’re going to continue to see high quality translations between human languages emerging. I’m not going to give a number in years, but I think it’s doable in the middle term.”

Ultimately, the uses and applications of artificial intelligence will still remain in the hands of their creators, according to MacCormick. “I’m an unapologetic optimist. I don’t think AIs are going to get out of control of humans and start doing things on their own,” he said. “As we get closer to systems that rival humans, they will still be systems that we have designed and are capable of controlling.”

That optimistic outlook would seemingly put MacCormick at odds with the views of the potential dangers of AI that have been voiced recently by the likes of Elon Musk, Stephen Hawking and Bill Gates. However, MacCormick says he agrees with their point that the ethical ramifications of artificial intelligence should be considered and guidance protocols developed.

“Everyone needs to be thinking about it and cooperating to be sure that we’re moving in the right direction,” MacCormick said. “At some point, all sorts of people need to be thinking about this, from philosophers and social scientists to technologists and computer scientists.”

MacCormick didn’t mince words when he cited the area of AI research where those protocols are most needed. The most obvious sub-field where protocols need to be in place, according to MacCormick, is military robotics. “As we become capable of building systems that are somewhat autonomous and can be used for lethal force in military conflicts, then the entire ethics of what should and should not be done really changes,” he said. “We need to be thinking about this and try to formulate the correct way of using autonomous systems.”

In the end, MacCormick’s optimistic view of the future, and the positive potentials of artificial intelligence, beams through clouds of uncertainty. “I like to take the optimistic view that we’ll be able to continue building these things and making them into useful tools that aren’t the same as humans, but have extraordinary capabilities,” MacCormick said. “And we can guide them and control them and use them for positive benefit.”

While Apple has gone for a flying saucer design, Samsung’s new Silicon Valley offices look more like a giant Rubik’s Cube. The $300 million campus opened yesterday, cementing the South Korean company’s presence in the Valley. The 1.1 million-square-foot site in San Jose is intended to accommodate up to 2,000 employees, bringing together Samsung’s American R&D teams as well as providing a home for its local sales and marketing staff. Samsung says the site’s open design is intended to foster collaboration between employees, enabling those “impromptu, spur-of-the-moment interactions that are the genesis of many great ideas.”

The company broke ground on the 10-story campus back in 2013, with architecture firm NBBJ designing the site, which includes courtyards, open “garden floors,” and lab space. “Today represents a major milestone as we open our most strategically important Samsung facility in the US and also our biggest investment in Silicon Valley,” said Jaesoo Han, Samsung’s devices president in America, in a press statement. “Samsung’s goal is nothing less than to develop the best next‐generation technologies for device solutions.” Here’s how the new offices compare to the original renders:

Samsung is stressing that the site is a home for its R&D work, including research into products like displays, semiconductors, and SSD hard drives. However, the building also puts it on more of an equal footing with tech giants like Apple and Facebook, which have already established (or have plans for) monumental homes in Silicon Valley. Samsung may be facing hard times in the smartphone industry, the product category it’s most well known for in the US, but these new offices should give it a little more visibility in the tech world.

Read more

A paraplegic man who was paralysed for five years has walked again on his own two feet, thanks to a new kind of brain-computer interface that can reroute his thoughts to his legs, bypassing his spinal cord entirely.

The anonymous man, who experiences complete paralysis in both legs due to a severe spinal cord injury (SCI), is the first such patient to demonstrate that brain-controlled overground walking after paraplegia due to SCI is feasible.

“Even after years of paralysis, the brain can still generate robust brain waves that can be harnessed to enable basic walking,” one of the researchers, Zoran Nenadic from the University of California, Irvine in the US, said in a press release. “We showed that you can restore intuitive, brain-controlled walking after a complete spinal cord injury.”

Read more

By Steve Gorman LOS ANGELES (Reuters) — A brain-to-computer technology that can translate thoughts into leg movements has enabled a man paralyzed from the waist down by a spinal cord injury to become the first such patient to walk without the use of robotics, doctors in Southern California reported on Wednesday. The slow, halting first steps of the 28-year-old paraplegic were documented in a preliminary study published in the British-based Journal of NeuroEngineering and Rehabilitation, along with a YouTube video. The feat was accomplished using a system allowing the brain to bypass the injured spinal cord and instead send messages through a computer algorithm to electrodes placed around the patient’s knees to trigger controlled leg muscle movements.

Read more