If computers think for themselves, should they have human rights?

Autodesk CTO Jeff Kowalski discusses the astonishing results driven by generative design.
Her computer, Karin Strauss says, contains her “digital attic”—a place where she stores that published math paper she wrote in high school, and computer science schoolwork from college.
She’d like to preserve the stuff “as long as I live, at least,” says Strauss, 37. But computers must be replaced every few years, and each time she must copy the information over, “which is a little bit of a headache.”
It would be much better, she says, if she could store it in DNA—the stuff our genes are made of.
(A computer simulation of a black hole. NASA, ESA, and D. Coe, J. Anderson, and R. van der Marel (STScI))
In case you haven’t heard, there is a very, very big problem with the universe: About 80% of all of the stuff inside it is missing.
Astronomers call this material “dark matter.” They know it’s out there because its huge mass tugs on and shapes galaxies, but no one has ever detected the material itself. Aside from exerting a gravitational pull, dark matter doesn’t seem to interact with stars, planets, dust, atoms, subatomic particles, or any other “normal” matter as we know it. It’s essentially invisible.
Wanted to share because I found this extremely interesting in what we’re discovery on implants and cells. I predict we are going to find out that in the next 7 to 10 years that we had some key things wrong as well as learned some new amazing things about cells especially with the synthetic cell & cell circuitry work that is happening for bio computing.
By Bikramjit Basu & his group Indian Institute of Science, Bangalore
For a variety of medical treatments these days, artificial, synthetic materials are inserted into the human body. Common examples include treatment for artery blockage and orthopaedic surgeries, like hip and knee replacements. Human bodies are not very receptive to foreign objects; most synthetic materials are rejected by the body. The choice of material that can be inserted, therefore, has to be very specific.
We do not yet have a material that is easily accepted inside the human body. A variety of materials are used for the different kinds of functions they are intended to perform once inserted inside. At our group, we have been trying to develop a comprehensive understanding of how biological cells in human bodies interact with a material surface. The idea is to recreate conditions that allow human cells to grow and function normally on a synthetic material. If we are able to do that, these materials, or biomaterials as we like to call them, can be used as various implants.
Another major leap forward in controlling system noise in QC.
A breakthrough into the full characterisation of quantum states has been published today as a Editors’ Suggestion in the journal Physical Review Letters.
The full characterisation (tomography) of quantum states is a necessity for future quantum computing. However, standard techniques are inadequate for the large quantum bit-strings necessary in full scale quantum computers.
A research team from the Quantum Photonics Laboratory at RMIT University and EQuS at the University of Sydney has demonstrated a new technique for quantum tomography — self-guided quantum tomography — which opens future pathways for characterisation of large quantum states and provides robustness against inevitable system noise.