Toggle light / dark theme

The NSA Plans for a Post-Quantum World

Hope they’re working with QC researchers in Los Alamos and DARPA; it is the US Government which is known for its silos and multi-layer bureaucracies.


Quantum computing is a novel way to build computers — one that takes advantage of the quantum properties of particles to perform operations on data in a very different way than traditional computers. In some cases, the algorithm speedups are extraordinary.

Specifically, a quantum computer using something called Shor’s algorithm can efficiently factor numbers, breaking RSA. A variant can break Diffie-Hellman and other discrete log-based cryptosystems, including those that use elliptic curves. This could potentially render all modern public-key algorithms insecure. Before you panic, note that the largest number to date that has been factored by a quantum computer is 143. So while a practical quantum computer is still science fiction, it’s not stupid science fiction.

(Note that this is completely different from quantum cryptography, which is a way of passing bits between two parties that relies on physical quantum properties for security. The only thing quantum computation and quantum cryptography have to do with each other is their first words. It is also completely different from the NSA’s QUANTUM program, which is its code name for a packet-injection system that works directly in the Internet backbone.)

New single-photon microwave source developed

A collaboration including researchers at the National Physical Laboratory (NPL) has developed a tuneable, high-efficiency, single-photon microwave source. The technology has great potential for applications in quantum computing and quantum information technology, as well as in studying the fundamental reactions between light and matter in quantum circuits.

The tuneable microwave single-photon source

Circuits which produce single photons are a vital component in quantum computers. They usually consist of a quantum bit or ‘qubit’, coupled to a resonance circuit. The resonant circuit limits the photon output to specific frequencies depending on the design of the circuit.

Brain Malware — Here’s How Hackers Can Get Inside Your Head

I have share my own risks on BMI a while back especially that which is connected (net, cloud, etc.)


brain malware 1Short Bytes: For a moment, forget computer and smartphone malware. There’s even a bigger danger in town in the form of brain malware. By exploiting brain-computer interfaces (BCI) being used in medical and gaming applications, hackers can read your private and sensitive data. Recently, a team of researchers from the University of Washington shed more light on the subject, demanding a policy-oriented regulation on BCIs.

Yen to usd converter The power of entanglement_ a conversation with fernando brandao binary joke

Hmmm.


What arrange you achieve?

My test is in quantum 1 usd to jpy ip, a nature which hunt for to usd to rmb exchange rate coalesce cardinal of the greatest determining multiplication of binary numbers of the finish hundred: quantum performance and computing. Especially, I am attracted in perusal quantum binary operator trap. Trap is a characteristic kinda correlations binary code for 2 solitary commence in quantum binary words performance. We are each close with the rs to usd construct of correlations. E. g., the meteorological.

New bioimaging technique offers clear view of nervous system

More info. on some research that I came across a few weeks ago on a new bioimaging technique to help map and understand the nervous system which is one of the hardest areas of the brain to map and monitor — this is truly groundbreaking on so many fronts such as precision meds. research, computer mapping of the brain and neuro pathways, etc. If will be very impressive to see how much this accelerates the efforts in finding a cure for diseases such as Dystonia.


MUNICH, Germany, Aug. 22 (UPI) — Scientists at Ludwig Maximilian University have developed a technique for turning the body of a deceased rodent entirely transparent, revealing the central nervous system in unprecedented clarity.

Researchers are hopeful the new and improved view will help scientists understand how traumatic brain injuries, strokes and aging yield chronic disorders like dementia and epilepsy.

Light and matter merge in quantum coupling

Where light and matter intersect, the world illuminates. Where light and matter interact so strongly that they become one, they illuminate a world of new physics, according to Rice University scientists.

Rice physicists are closing in on a way to create a new state in which all the electrons in a material act as one by manipulating them with and a magnetic field. The effect made possible by a custom-built, finely tuned cavity for terahertz radiation shows one of the strongest light-matter coupling phenomena ever observed.

The work by Rice physicist Junichiro Kono and his colleagues is described in Nature Physics. It could help advance technologies like quantum computers and communications by revealing new phenomena to those who study cavity quantum electrodynamics and , Kono said.

HKUST Develops Tiny Lasers that Opens New Era for Light-based Computing

Congrats Hong Kong Univ.


Researchers at The Hong Kong University of Science and Technology (HKUST) have fabricated microscopically-small lasers directly on silicon, enabling the future-generation microprocessors to run faster and less power-hungry – a significant step towards light-based computing.

The innovation, made by Prof Kei-may Lau, Fang Professor of Engineering and Chair Professor of the Department of Electronic and Computer Engineering, in collaboration with the University of California, Santa Barbara; Sandia National Laboratories and Harvard University, marks a major breakthrough for the semiconductor industry and well beyond.

Silicon forms the basis of everything from solar cells to the integrated circuits at the heart of our modern electronic gadgets. However, the crystal lattice of silicon and of typical laser materials could not match up, making it impossible to integrate the two materials until now, when Prof Lau’s group managed to integrate subwavelength cavities — the essential building blocks of their tiny lasers — onto silicon, allowing them to create and demonstrate high-density on-chip light-emitting elements. The finding was recently published as the cover story on Applied Physics Letters.