Toggle light / dark theme

Yale Engineers Advance Quantum Technology With Photon Control

Engineers from Yale University have developed a new technique to control the frequency of single photons.

The ability to control the frequency of single photons is crucial to realize the potential of quantum communications and quantum computing. The current methods for changing photon frequency, however, bring with them significant drawbacks.

Researchers in the lab of Hong Tang, the Llewellyn West Jones, Jr. Professor of Electrical Engineering & Physics, have developed a technique that avoids these obstacles. The results of their work are published today in Nature Photonics. Linran Fan, a Ph.D. student in Tang’s lab, is the lead author.

A technology that can bring dead back to life might be a reality soon

Researchers plan to bring dead to life by freezing their brains and then resurrecting them with artificial intelligence.

Bringing the dead back to life is futuristic and final frontier of science and Humai is working on just that. Humai is a technology company based in Los Angeles and is working on a project known as “Atom & Eve” that would let human consciousness be transferred to an artificial body after their death.

The artificial intelligence company has said it can resurrect human beings within the next 30 years. The “conversational styles, [behavioural]patterns, thought processes and information about how your body functions from the inside-out” would be stored on a silicon chip through AI and nanotechnology.

A Computer Can Now Translate Languages as Well as a Human

Have you ever been in a situation where knowing another language would have come in handy?

I remember standing on the platform at Tokyo Station watching my train to Nagano — the last train of the day — pulling away without me on it. What ensued was a frustrating hour of gestures, confused smiles, and head-shaking as I wandered the station looking for someone who spoke English (my Japanese is unfortunately nonexistent). It would have been really helpful to have a bilingual pal along with me to translate.

Bilingual pals can be hard to find, but Google’s new translation software may be an equally useful alternative. In a paper released last week, the authors noted that Google’s Neural Machine Translation system (GNMT) reduced translation errors by an average of 60% compared to Google’s phrase-based system. GMNT uses deep learning, a technology that aims to ‘think’ in the same way as a human brain.

AMA: I’m Zoltan Istvan, a transhumanist US Presidential Candidate. Ask me anything!! : Futurology

Come “ask me anything” right now!!! I’m trying to answer all questions I get asked:


Hi Reddit,

Thank you for having me here. My name is Zoltan Istvan, and I’m a futurist, journalist, and science fiction writer. I’m also the 2016 Presidential candidate for the Transhumanist Party.

For the last 725 days, I have been campaigning full time to spread transhumanism and life extension policies across America and the world. While I never expected to win the US Presidency, my campaign has received a lot of attention—both good and bad—for its emphasis on radical science, technology, secularism, and futurist ideas.

During my campaign, I’ve spoken on transhumanism at the World Bank, consulted with the US Navy on artificial intelligence, got a chip implanted in my hand, interviewed with underground group Anonymous, and drove a coffin-shaped bus called the Immortality Bus across America to deliver a Transhumanist Bill of Rights to the US Capitol. My 20-point political platform has many futurist policies in it, but some of the most important ones are supporting a Universal Basic Income, classifying aging as a disease, legalizing all drugs, creating a Transhumanist Olympics, and taking money from the military and giving it to science.

Read more

Aging, Just Another Disease

Aging leads to diseases and ultimately death. Time for people to ditch the semantics and recognise that aging and disease are not two mysterious independent processes but are in fact one and the same.


Aging leads to the diseases of aging and the discussion is largely a matter of semantics.

“The concept of aging is undergoing a rapid transformation in medicine. The question has long been asked: Is aging a natural process that should be accepted as inevitable, or is it pathologic, a disease that should be prevented and treated? For the vast majority of medicine’s history, the former position was considered a self-evident truth. So futile was any attempt to resist the ravages of aging that the matter was relegated to works of fantasy and fiction. But today, the biomedical community is rethinking its answer to this question.

The controversy has been fanned, to a great extent, by one Aubrey de Grey, a Cambridge University–trained computer scientist and a self-taught biologist and gerontologist. Over the past decade, de Grey has undertaken an energetic campaign to reframe aging as a pathologic process, one that merits the same level of attention as, say, cancer or diabetes.”

#aging #sens

Would You Like to Be Uploaded to a Computer When You Die?

Rattling around inside a hard drive doesn’t sound like an awful lot of fun — but then, neither does death.

Both eventualities are rather difficult to imagine, but we’ll all have to give them some thought sooner rather than later. Neuroscientist and neuroengineer Randal Koene thinks it’s only going to be another 10 years before we replace parts of the brain with prosthetics.

From there, it’s just a matter of replacing each region systematically, to end up with someone whose brain is immortal and electronic. Could the last person to die have already been born?

Edmonton researchers’ tiny discovery may revolutionize computers

New method for creating smaller switches for QC identified and making smaller and more efficient QC systems possible.


Edmonton nanotechnology researchers working with atom-sized materials have made a breakthrough that could lead to smaller, ultraefficient computers.

The team, led by Robert Wolkow, together with collaborators at the Max Planck Institute in Hamburg, have developed a way to create atomic switches for electricity nearly 100 times smaller than the smallest switches, or transistors, on the market today. Their findings appeared in the Oct. 26 edition of the scientific publication Nature Communications.

“What we’re showing in this new paper is one part in a bigger scheme … that allows us to make ultralow power consuming electronic devices,” said Wolkow, a physics professor at the University of Alberta and the principal research officer at Edmonton’s National Institute for Nanotechnology. He’s also chief technology officer at spinoff company Quantum Silicon Inc.

Tiny Computer Pushes the Envelope with Micro-Memory

Talk about downsizing – researchers at the University of California in Santa Barbara have developed a design for a 50 nanometer square computer, the university announced Oct. 27.

For now, that size is entirely theoretical. It could be managed by a novel kind of logic that enables the computer to process data inside a three-dimensional structure.

“In a regular computer, data processing and memory storage are separated, which slows down computation. Processing data directly inside a three-dimensional memory structure would allow more data to be stored and processed much faster,” said Gina Adam, a postdoctoral researcher and the lead author of the paper.

Toward Handheld QCL Sensors

In the TU Wien design, quantum cascade heterostructures are arrayed within concentric ring-shaped waveguides (top; diameter of outer ring is 400 microns), and can act as both sources and detectors of light on the same chip. In the specific setup tested by the lab (bottom), one of the ring structures (on the right), acting in QCL mode, sends its light through a chamber containing the gas to be analyzed. The beam is reflected by a mirror (on the left) and sent back through the chamber, to be picked up by the other ring structure, acting in detector mode. [Image: TU Wien]

Quantum cascade lasers (QCL) excel as mid-infrared light sources, a characteristic that has made them a linchpin in many environmental and industrial gas-sensing applications. But though QCLs themselves can be quite small, actually setting up a sensor system requires other elements beyond the laser, which can make it tough to design compact devices ready for field use.

A team of scientists from the Vienna University of Technology (TU Wien), Austria, now offers a concept that the group believes could make designing handheld QCL-based sensors a lot easier. The key: a clever scheme that combines the laser and the detector on a single chip less than half a millimeter across (ACS Photon., doi: 10.1021/acsphotonics.6b00603).