A new mathematical model of memory could accelerate the quest to build super-powered, brain-inspired hardware systems.
Category: computing – Page 806
There are two kinds of people in Washington, DC, says entrepreneur Dean Kamen. There are the policy experts, whom he calls cynics. And there are the scientists, whom he deems optimists.
Kamen, speaking at the White House Frontiers Conference at the University of Pittsburgh, places himself in the latter camp. Unlike policy wonks and politicians who see diseases like Alzheimer’s or ALS as unstoppable scourges, Kamen points out that previously terrifying diseases were all toppled by medical innovation. The plague, polio, smallpox — all were civilization-threatening epidemics until experimental scientists discovered new ways to combat them.
If that sounds like the kind of disruption that the tech industry has unleashed across the rest of the world, that’s no accident. Kamen, the founder of DEKA, a medical R&D company, says that the same trends that have empowered our computers and phones and communication networks will soon power a revolution in health care. He says that medical innovation follows a predictable cycle. First we feel powerless before a disease. Then we seek ways of treating it. Then we attempt to cure it.
Leading Australian engineer and physicist, Professor Andrea Morello, was today named inaugural recipient of the Rolf Landauer and Charles H. Bennett Award in Quantum Computing by the prestigious American Physical Society, the world’s leading organisation of physicists.
Morello, a professor in UNSW’s School of Electrical Engineering & Telecommunications and head of the Quantum Spin Control group at the Centre for Quantum Computation and Communication Technology, was awarded the prize “for remarkable achievements in the experimental development of spin qubits in silicon”.
The prize, endowed by the International Business Machines Corp, is named for two of the founding fathers of modern information science, both classical and quantum.
Physicists say they may have evidence that the universe is a computer simulation.
How? They made a computer simulation of the universe. And it looks sort of like us.
A long-proposed thought experiment, put forward by both philosophers and popular culture, points out that any civilisation of sufficient size and intelligence would eventually create a simulation universe if such a thing were possible.
Breaks through the 5-nanometer quantum tunneling threshold; may allow for Moore’s law to continue…
The first transistor with a working 1-nanometer (nm) gate has been created by a team led by Lawrence Berkeley National Laboratory (Berkeley Lab) scientists. Until now, a transistor gate size less than 5 nanometers has been considered impossible because of quantum tunneling effects. (One nanometer is the diameter of a glucose molecule.)
The breakthrough was achieved by creating a 2D (flat) semiconductor field-effect transistor using molybdenum disulfide (MoS2) instead of silicon and a 1D single-walled carbon nanotube (SWCNT) as a gate electrode, instead of various metals. (SWCNTs are hollow cylindrical tubes with diameters as small as 1 nanometer.)
As I and others have warned industry about for a ling while now. Wait until you see the AI experience on QC and how we enable synthetic biocomputing on this connected infrastructure.
Next year, we may see the launch of the first true quantum computers.
The implications will be staggering.
This post aims to answer three questions:
The world of quantum computing is a minefield. The more scientists think they know about it, the more they realize there’s so much more to learn. But, with thanks to physicists in a laboratory in Canberra, we are that one step closer to seeing a real life working quantum computer as they managed to freeze light in a cloud of atoms. This was achieved by using a vaporized cloud of ultracold rubidium atoms to create a light trap into which infrared lasers were shone. The light was then constantly emitted and re-captured by the newly formed light trap.
Here’s why quantum computing represents the future for investment managers, analysts and traders on the buy-side and the sell-side.
http://news.efinancialcareers.com/us-en/245138/pit-traders/
The unparalleled possibilities of quantum computers are currently still limited because information exchange between the bits in such computers is difficult, especially over larger distances. FOM workgroup leader Lieven Vandersypen and his colleagues within the QuTech research centre and the Kavli Institute for Nanosciences (Delft University of Technology) have succeeded for the first time in enabling two non-neighbouring quantum bits in the form of electron spins in semiconductors to communicate with each other. They publish their research on 10 October in Nature Nanotechnology.
Information exchange is something that we scarcely think about these days. People constantly communicate via e-mails, mobile messaging applications and phone calls. Technically, it is the bits in those various devices that talk to each other. “For a normal computer, this poses absolutely no problem,” says professor Lieven Vandersypen. “However, for the quantum computer – which is potentially much faster than the current computers – that information exchange between quantum bits is very complex, especially over long distances.”
Mediating with quantum dots Artist impression of two electron spins that talk to each other via a ‘quantum mediator’. The two electrons are each trapped in a semiconductor nanostructure (quantum dot). The two spins interact, and this interaction is mediated by a third, empty quantum dot in the middle. In the future, coupling over larger distances can be achieved using other objects in between to mediate the interaction. This will allow researchers to create two-dimensional networks of coupled spins, that act as quantum bits in a future quantum computer. Copyright: Tremani/TU Delft.