Toggle light / dark theme

Magine a future in which hyper-efficient solar panels provide renewable sources of energy, improved water filters quickly remove toxins from drinking water, and the air is scrubbed clean of pollution and greenhouse gases. That could become a reality with the right molecules and materials.

Scientists from Harvard and Google have taken a major step toward making the search for those molecules easier, demonstrating for the first time that a quantum computer could be used to model the electron interactions in a complex molecule. The work is described in a new paper published in the journal Physical Review X by Professor Alán Aspuru-Guzik from the Department of Chemistry and Chemical Biology and several co-authors.

“There are a number of applications that a quantum computer would be useful for: cryptography, machine learning, and certain number-theory problems,” Aspuru-Guzik said. “But one that has always been mentioned, even from the first conceptions of a quantum computer, was to use it to simulate matter. In this case, we use it to simulate chemistry.”

Read more

The ultimate test of wits in computer security occurs through open competition on the global Capture the Flag (CTF) tournament circuit. In CTF contests, experts reverse engineer software, probe its weaknesses, search for deeply hidden flaws, and create securely patched replacements.

On August 4, 2016, DARPA will hold the Cyber Grand Challenge, the world’s first all-computer CTF tournament. It will take place live on stage co-located with the DEF CON conference in Las Vegas. The public is invited to attend and observe as automated systems take the first steps towards a defensible, connected future.

Learn more about the Cyber Grand Challenge at: http://www.cybergrandchallenge.com/.

#DARPACGC

MIT engineers have developed a microfluidic device that replicates the neuromuscular junction—the vital connection where nerve meets muscle. The device, about the size of a U.S. quarter, contains a single muscle strip and a small set of motor neurons. Researchers can influence and observe the interactions between the two, within a realistic, three-dimensional matrix.

The researchers genetically modified the neurons in the device to respond to light. By shining light directly on the neurons, they can precisely stimulate these cells, which in turn send signals to excite the muscle fiber. The researchers also measured the force the muscle exerts within the device as it twitches or contracts in response.

The team’s results, published online today in Science Advances, may help scientists understand and identify drugs to treat amyotrophic lateral sclerosis (ALS), more commonly known as Lou Gehrig’s disease, as well as other neuromuscular-related conditions.

Read more

Quantum computers promise speedy solutions to some difficult problems, but building large-scale, general-purpose quantum devices is a problem fraught with technical challenges.

To date, many research groups have created small but functional computers. By combining a handful of atoms, electrons or superconducting junctions, researchers now regularly demonstrate quantum effects and run simple —small programs dedicated to solving particular problems.

But these laboratory devices are often hard-wired to run one program or limited to fixed patterns of interactions between the quantum constituents. Making a quantum computer that can run arbitrary algorithms requires the right kind of physical system and a suite of programming tools. Atomic , confined by fields from nearby electrodes, are among the most promising platforms for meeting these needs.

Read more

Interesting and true on many situations; and will only expand as we progress in areas of AI, QC, and Singularity as well.


The use of algorithms to filter and present information online is increasingly shaping our everyday experience of the real world, a study published by Information, Communication & Society argues.

Associate Professor Michele Willson of Curtin University, Perth, Australia looked at particular examples of computer algorithms and the questions they raise about personal agency, changing world views and our complex relationship with technologies.

Algorithms are central to how information and communication are located, retrieved and presented online, for example in Twitter follow recommendations, Facebook newsfeeds and suggested Google map directions. However, they are not objective instructions but assume certain parameters and values, and are in constant flux, with changes made by both humans and machines.