Toggle light / dark theme

For decades, scientists have tried to harness the unique properties of carbon nanotubes to create high-performance electronics that are faster or consume less power — resulting in longer battery life, faster wireless communication and faster processing speeds for devices like smartphones and laptops.

But a number of challenges have impeded the development of high-performance transistors made of carbon nanotubes, tiny cylinders made of carbon just one atom thick. Consequently, their performance has lagged far behind semiconductors such as silicon and gallium arsenide used in computer chips and personal electronics.

Now, for the first time, University of Wisconsin–Madison materials engineers have created carbon nanotube transistors that outperform state-of-the-art silicon transistors.

Read more

Calico, a company focused on aging research and therapeutics, today announced that Daphne Koller, Ph.D., is joining the company as Chief Computing Officer. In this newly created position, Dr. Koller will lead the company’s computational biology efforts. She will build a team focused on developing powerful computational and machine learning tools for analyzing biological and medical data sets. She and her team will work closely with the biological scientists at Calico to design experiments and construct data sets that could provide a deeper understanding into the science of longevity and support the development of new interventions to extend healthy lifespan.

Calico will try to use machine learning to understand the complex biological processes involved in aging.

Read more

Hoping Google/ Alphabet, Microsoft are paying attention.


Robin Li (right), chief executive officer of Baidu Inc at the launch of” Baidu Brain” on Sept 1, 2016 in Beijing. (Photo/China Daily)

Chinese tech giant reveals its latest bid to gain the upper hand in the field of artificial intelligence

Chinese internet giant Baidu Inc officially unveiled its latest plans in the burgeoning field of artificial intelligence, including “Baidu Brain”, which simulates the human brain with computer technology, and a partnership with Nvidia Corp to develop driver-less vehicles.

I remember 4 years ago at a CIO Life Sciences Conference in AZ when one of the leaders over a research lab mention the desire to finally enable patients to share their entire DNA sequence on a thumb drive with their doctor in order to be treated properly as well as have insights on the patient’s future risks. However, limitations such as HIPAA was brought up in the discussion. Personally, with how we’re advancing things like synthetic biology which includes DNA data storage, cell circuitry, electronic tattoos, etc. thumb drive maybe too outdated.


The circle that is personalized medicine consists of more than just doctor, patient, and patient data. Other elements are in the loop, such as EHR systems that incorporate gene-drug information and updated clinical guidelines.

Read more

Luv this.


A research team led by Professor Keon Jae Lee from the Korea Advanced Institute of Science and Technology (KAIST) and by Dr. Jae-Hyun Kim from the Korea Institute of Machinery and Materials (KIMM) has jointly developed a continuous roll-processing technology that transfers and packages flexible large-scale integrated circuits (LSI), the key element in constructing the computer’s brain such as CPU, on plastics to realize flexible electronics.

Professor Lee previously demonstrated the silicon-based flexible LSIs using 0.18 CMOS (complementary metal -oxide semiconductor) process in 2013 (ACS Nano, “In Vivo Silicon-based Flexible Radio Frequency Integrated Circuits Monolithically Encapsulated with Biocompatible Liquid Crystal Polymers”) and presented the work in an invited talk of 2015 International Electron Device Meeting (IEDM), the world’s premier semiconductor forum.

Highly productive roll-processing is considered a core technology for accelerating the commercialization of wearable computers using flexible LSI. However, realizing it has been a difficult challenge not only from the roll-based manufacturing perspective but also for creating roll-based packaging for the interconnection of flexible LSI with flexible displays, batteries, and other peripheral devices.

Read more

Nantero, Fujitsu Semiconductor and Mie Fujitsu Semiconductor today announced an agreement for Fujitsu and Mie Fujtisu to license that Nantero’s technology for NRAM, non-volatile RAM using carbon nanotubes, and to conduct joint development towards releasing a product based on 55-nm process technology.

Three companies are aiming to develop a product using NRAM non-volatile RAM that achieves several 1000 times faster rewrites and many thousands of times more rewrite cycles than embedded flash memory, making it potentially capable of replacing DRAM with non-volatile memory.

Fujitsu Semiconductor plans to develop an NRAM-embedded custom LSI product by the end of 2018, with the goal of expanding the product line-up into stand-alone NRAM product after that. Mie Fujitsu Semiconductor, which is a pure-play foundry, plans to offer NRAM-based technology to its foundry customers.

Read more

Let’s face it: Tablets are on the brink of death, and it’s difficult to get excited about a new slate these days. And even though tablet-laptop hybrids are taking off, that market is cornered by Surfaces and iPad Pros. So I wasn’t prepared to be as thrilled as I was by Lenovo’s latest offering. The Yoga Book, based on my experience with a preview unit, is not merely a mimicry of Microsoft’s Surface Book; it has impressively innovative features and a well-thought-out interface that make it a solid hybrid in its own right.

Read more