Toggle light / dark theme

In Brief As technology improves, the possibility that our world may be a simulated one is becoming more and more probable, argues Universe Today founder Fraser Cain. But can we ever prove that we live in a simulation of a reality?

All the world’s a stage. Or is it a simulation?

The idea that what we consider reality is actually a simulation was first proposed by scientist Nick Bostrom, and it is frequently addressed in fiction (e.g., “The Matrix” trilogy) and by innovators and educators such as Elon Musk, who brought up the topic at the 2016 Code Conference.

Read more

At the forefront of computing technology for decades, silicon-based chips’ reign may soon end, as today’s chip designers are looking for other materials that offer more options and more amazing abilities than the silicon we all know and love.

This new trend has spurred the guys at Oak Ridge National Laboratory (ORNL) to develop what could be the foundation for multi-role computer chips.

In a recent study, ORNL scientists looked at single crystal complex oxide materials at the very smallest levels. They discovered that that contained in just one piece of this material were multiple tiny regions that each responded to magnetic and electrical stimuli differently.

Read more

Zura Kakushadze is lead author of this peer reviewed paper published by the Free University of Tbilisi. It describes an information paradox that arises in a materialist’s description of the Universe—if we assume that the Universe is 100% quantum. The observation of the paradox stems from an interdisciplinary thought process whereby the Universe can be viewed as a “quantum computer”.

The presentation is intentionally nontechnical to make it accessible to a wide a readership.

Does the Universe Have a Hard Drive?

From laptops to cellphones, technology advances through the ever-increasing speed at which electric charges are directed through circuits. Similarly, speeding up control over quantum states in atomic and nanoscale systems could lead to leaps for the emerging field of quantum technology.

An international collaboration between physicists at the University of Chicago, Argonne National Laboratory, McGill University, and the University of Konstanz recently demonstrated a new framework for faster control of a quantum bit. First published online Nov. 28, 2016, in Nature Physics, their experiments on a single electron in a diamond chip could create quantum devices that are less prone to errors when operated at high speeds.

Read more

Researchers from the Tyndall National Institute in Cork have created micro-structures shaped like small pyramids that can create entangled photons. Does this mean that quantum computers are closer than we realize?

Quantum computers have been the stuff of science fiction for the past few decades. In recent times, quantum computers have slowly become more of a reality with some machines successfully solving real world problems such as games and path finding algorithms.

But why are quantum computers so desired by tech firms and why is there so much research into the field? Silicon has been incredibly loyal to the tech world for the past 50 years, giving us the point contact transistor in 1947. Now, silicon is at the center of technology with computers, tablets, smartphones, the IoT, and even everyday items. In fact, you cannot walk down a city street without being in range of some Wi-Fi network or influence from a small silicon device.

Read more

Researchers used X-ray videos (right) to capture and trace the movements of the different parts of a macaque’s vocal anatomy — such as the tongue, lips, and larynx — during a number of orofacial behaviors. (credit: Illustration by Tecumseh Fitch, University of Austria, and image courtesy of Asif Ghazanfar, Princeton Neuroscience Institute)

While they have a speech-ready vocal tract, primates can’t speak because they lack a speech-ready brain, contrary to widespread opinion that they are limited by anatomy, researchers at Princeton University and associates have reported Dec. 9 in the open-access journal Science Advances.

The researchers reached this conclusion by first recording X-ray videos showing the movements of the different parts of a macaque’s vocal anatomy — such as the tongue, lips and larynx. They then converted that data into a computer model that could predict and simulate a macaque’s vocal range.

Read more

For the past four decades, the electronics industry has been driven by what is called “Moore’s Law,” which is not a law but more an axiom or observation. Effectively, it suggests that the electronic devices double in speed and capability about every two years. And indeed, every year tech companies come up with new, faster, smarter and better gadgets.

Specifically, Moore’s Law, as articulated by Intel cofounder Gordon Moore, is that “The number of transistors incorporated in a chip will approximately double every 24 months.” Transistors, tiny electrical switches, are the fundamental unit that drives all the electronic gadgets we can think of. As they get smaller, they also get faster and consume less electricity to operate.

In the technology world, one of the biggest questions of the 21st century is: How small can we make transistors? If there is a limit to how tiny they can get, we might reach a point at which we can no longer continue to make smaller, more powerful, more efficient devices. It’s an industry with more than US$200 billion in annual revenue in the U.S. alone. Might it stop growing?

Read more