Toggle light / dark theme

While most of us are familiar with magnets from childhood games of marveling at the power of their repulsion or attraction, fewer realize the magnetic fields that surround us—and the ones inside us. Magnetic fields are not just external curiosities; they play essential roles in our bodies and beyond, influencing biological processes and technological systems alike. A recent arXiv publication from the University of Chicago’s Pritzker School of Molecular Engineering and Argonne National Laboratory highlights how magnetic fields in the body may be analyzed using quantum-enabled fluorescent proteins, with hopes of applying to cell formation or early disease detection.

Detecting subtle changes in magnetic fields may equate to beyond subtle impacts in certain fields. For instance, quantum sensors could be applied to the detection of electromagnetic anomalies in data centers, potentially revealing evidence of malicious tampering. Similarly, they might be used to study changes in the brain’s electromagnetic signals, offering insights into neurological diseases such as the onset of dementia. However, these applications demand sensors that are not only sensitive but also capable of operating reliably in real-world conditions.

Spin qubits, known for their notable sensitivity to magnetic fields, are introduced in the study as a compelling solution. Traditionally, spin qubits have been formed from nitrogen-vacancy centers in diamonds. While these systems have demonstrated remarkable precision, the diamonds’ bulky size in relation to molecules and complex surface chemistry limit their usability in biological environments. This creates a need for a more adaptable and biologically compatible sensor.

The relationship between brain and computer is a perennial theme in theoretical neuroscience, but it has received relatively little attention in the philosophy of neuroscience. This paper argues that much of the popularity of the brain-computer comparison (e.g. circuit models of neurons and brain areas since McCulloch and Pitts, Bull Math Biophys 5: 115–33, 1943) can be explained by their utility as ways of simplifying the brain. More specifically, by justifying a sharp distinction between aspects of neural anatomy and physiology that serve information-processing, and those that are ‘mere metabolic support,’ the computational framework provides a means of abstracting away from the complexities of cellular neurobiology, as those details come to be classified as irrelevant to the (computational) functions of the system.

Researchers have discovered that certain disordered superconductors exhibit abrupt phase transitions, a finding that challenges established theories and could have implications for quantum computing.

A study published in Nature by researchers investigating indium oxide films — a highly disordered superconductor — shows that their transition from a superconducting to an insulating state is not gradual, as traditionally assumed, but sudden. This abrupt shift, known as a first-order quantum phase transition, contrasts with the commonly observed continuous, second-order transitions in superconductors.

Key measurements revealed a sharp drop in superfluid stiffness — which is a property that reflects the superconducting state’s ability to resist phase distortions — at a critical level of disorder. Interestingly, the critical temperature of these films, where superconductivity breaks down, no longer depended on the strength of electron pairing but rather on the superfluid stiffness. This behavior aligns with a pseudogap regime, where electron pairs exist but lack the coherence needed for superconductivity.

Computer scientists at the University of California San Diego have developed a method for generating highly realistic computer-generated images of fluid dynamics in elements such as smoke.

This research, conducted by the UC San Diego Center for Visual Computing, was presented at the SIGGRAPH Asia 2024 conference, where it received a Best Paper Honorable Mention for its contributions to computer graphics and physics-based simulation. The paper is published in ACM Transactions on Graphics.

To demonstrate the power of their approach, the team compared an iconic photograph from the 1980 eruption of Mount Saint Helens volcano in Washington State to a computer-generated rendering of a volcanic smoke plume created using their new method. The resulting simulation captures the intricate, multi-scale billowing of the smoke plume, including its twisting, curling motion and delicate turbulence, which are hallmarks of realistic fluid behavior.

USTC researchers created a groundbreaking on-chip photonic simulator, leveraging thin-film lithium niobate chips to simplify quantum simulations of complex structures, achieving high-dimensional synthetic dimensions with reduced frequency demands.

A research team led by Prof. Chuanfeng Li from the University of Science and Technology of China (USTC) has made a significant breakthrough in quantum photonics. The team successfully developed an on-chip photonic simulator capable of modeling arbitrary-range coupled frequency lattices with gauge potential. This achievement was detailed in a recent publication in Physical Review Letters.

<em>Physical Review Letters (PRL)</em> is a prestigious peer-reviewed scientific journal published by the American Physical Society. Launched in 1958, it is renowned for its swift publication of short reports on significant fundamental research in all fields of physics. PRL serves as a venue for researchers to quickly share groundbreaking and innovative findings that can potentially shift or enhance understanding in areas such as particle physics, quantum mechanics, relativity, and condensed matter physics. The journal is highly regarded in the scientific community for its rigorous peer review process and its focus on high-impact papers that often provide foundational insights within the field of physics.

face_with_colon_three year 2022 This photonic chip can transmit all the internet data every second.


A microcomb source based on a silicon nitride ring resonator is shown to support petabit-per-second data transmission over a multicore optical fibre.

Discover the groundbreaking world of quantum teleportation! Learn how scientists are revolutionizing data transfer using quantum entanglement, enabling secure, instant communication over vast distances. From integrating quantum signals into everyday internet cables to overcoming challenges like noise, this technology is reshaping our future. Explore the possibilities of a quantum internet and its role in computing and security. Watch our full video for an engaging dive into how quantum teleportation works and why it’s a game-changer for technology. Don’t miss out!

Paper link: https://journals.aps.org/prl/abstract

Visit our website for up-to-the-minute updates:
www.nasaspacenews.com.

Follow us.
Facebook: / nasaspacenews.
Twitter: / spacenewsnasa.

Join this channel to get access to these perks:
/ @nasaspacenewsagency.

#NSN #NASA #Astronomy#QuantumTeleportation #QuantumInternet #QuantumComputing #SecureCommunication #QuantumTech #ScienceBreakthrough #DataTransfer #FutureTechnology #QuantumEntanglement #QuantumScience #QuantumWorld #TeleportationScience #TechInnovation #NextGenTech #QuantumPhysics #ScienceExplained #CuttingEdgeTech #QuantumFuture #QuantumTechnology #TeleportationExplained #QuantumNetworks #RevolutionaryTech #TechUpdates #QuantumCommunication #DataRevolution #QuantumMechanics #TechAdvancements #PhysicsInnovation #ScienceMadeSimple #QuantumBreakthrough #QuantumDiscoveries

Forget conventional electronics, DNA tech stores data, offers computing functions.


Called “primordial DNA store and compute engine,” the technology could store data securely for thousands of years in commercially available spaces without degrading the information-storing DNA, suggests testing.

In conventional computing technologies, the ways data are stored and processed are compatible with each other, according to researchers. However, in reality, data storage and data processing are done in separate parts of the computer, and modern computers are a network of complex technologies.

The new technology is made possible by using recent developments, which have enabled the creation of soft polymer materials that have unique morphologies.

A recent study published in PLOS Computational Biology found that people with stronger autistic traits, particularly those with a preference for predictability, tend to exhibit unique curiosity-driven behaviors. These individuals showed persistence in tasks requiring sustained attention, often leading to superior learning outcomes.

Autism spectrum disorder is a developmental condition that affects how individuals perceive and interact with the world. It is characterized by differences in communication, social interaction, and behavior patterns. Rather than being a singular condition, autism exists on a spectrum, meaning that individuals experience varying levels of intensity and expression of traits. While some may require significant support in daily life, others might navigate independently with unique strengths and challenges.

Autistic traits are characteristics commonly associated with autism but may also be present in varying degrees within the general population. These traits can include a preference for routines, heightened sensitivity to sensory input, and intense focus on specific topics of interest. While these traits can sometimes pose challenges, they also contribute to unique ways of thinking and problem-solving.