Toggle light / dark theme

Researcher develops new tool for understanding hard computational problems that appear intractable

The notion that some computational problems in math and computer science can be hard should come as no surprise. There is, in fact, an entire class of problems deemed impossible to solve algorithmically. Just below this class lie slightly “easier” problems that are less well-understood—and may be impossible, too.

David Gamarnik, professor of operations research at the MIT Sloan School of Management and the Institute for Data, Systems, and Society, is focusing his attention on the latter, less-studied category of problems, which are more relevant to the everyday world because they involve —an integral feature of natural systems. He and his colleagues have developed a potent tool for analyzing these problems called the overlap gap property (or OGP). Gamarnik described the new methodology in a recent paper in the Proceedings of the National Academy of Sciences.

Raspberry Pi system can detect viruses on other devices without use of software

A team of researchers at the Institute of Computer Science and Random Systems has built a non-software-based virus detection system using a Raspberry Pi, an H-field probe and an oscilloscope to detect electromagnetic wave signatures of multiple types of viruses. The team presented its system and test results at last month’s ACM Machinery’s Annual Computer Security Applications Conference and published a paper describing their system on ACM’s Research Article page.

The idea behind the new system is that running software generates electromagnetic waves. And each piece of software generates its own unique wave patterns due to the way the software executes its code. The researchers took advantage of this knowledge and began using an H-field probe to capture wave patterns of known computer viruses running on various devices and viewed the results on an oscilloscope. They saw oscilloscope patterns that were unique to individual viruses as they were running. The researchers used that information to program a Raspberry Pi to identify data from the other two devices to recognize known virus wave patterns, using the system as a virus detector. To determine if a virus is running on a computer, IoT device or smartphone, a user places the H-field probe close enough to the device to read the electromagnetic waves that are generated. The Raspberry Pi then reports on whether it found any viruses, and if so, which ones.

Diminished reality flips the script on AR

Fittingbox’s Frame Removal uses diminished reality to help people pick out new eyeglasses — but the tech’s potential extends far beyond the bridge of your nose.


French company Fittingbox has just unveiled an app that uses a technology called “diminished reality” — the opposite of augmented reality (AR).

The app is designed to help shoppers pick out new eyeglasses, but the tech’s potential extends far beyond the bridge of your nose.

The challenge: Many eyeglass sellers now let you try on specs virtually — just pick a pair off a website, look into the camera on your phone or computer, and thanks to the magic of augmented reality (AR), you can see what the frames look like on your face.

Making light work of emerging micropollutants

Carbon-based organic micropollutants in water can be removed by treatment with high-intensity pulses of light in a procedure developed and demonstrated by researchers at KAUST.

This photodegradation process was already known to be feasible, but its use was limited by the long times it required. Luca Fortunato, Thomas Anthopoulos and colleagues have demonstrated that this photodegradation treatment can be dramatically accelerated with high-intensity pulses generated from a xenon flash lamp.

“An interesting aspect of this work is that we combined the expertise and technologies of two different fields,” says Fortunato. He explains that the collaboration between the two different research departments—KAUST’s Solar Center and Water Desalination and Reuse Center—allowed the team to adopt a pulsed light system that was previously used to process semiconductor materials for transistors and solar cells.

Drones in N.Y. Corridor Can Fly Beyond Visual Line of Sight #drone #droneday

Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Join 32,000+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.

These Will Be the Earliest Use Cases for Quantum Computers

Quantum computers will not be general-purpose machines, though. They will be able to solve some calculations that are completely intractable for current computers and dramatically speed up processing for others. But many of the things they excel at are niche problems, and they will not replace conventional computers for the vast majority of tasks.

That means the ability to benefit from this revolution will be highly uneven, which prompted analysts at McKinsey to investigate who the early winners could be in a new report. They identified the pharmaceutical, chemical, automotive, and financial industries as those with the most promising near-term use cases.

The authors take care to point out that making predictions about quantum computing is hard because many fundamental questions remain unanswered; for instance, the relative importance of the quantity and quality of qubits or whether there can be practical uses for early devices before they achieve fault tolerance.

Qubits Can Be as Safe as Bits, Researchers Show

Over the centuries, we have learned to put information into increasingly durable and useful form, from stone tablets to paper to digital media. Beginning in the 1980s, researchers began theorizing about how to store the information inside a quantum computer, where it is subject to all sorts of atomic-scale errors. By the 1990s they had found a few methods, but these methods fell short of their rivals from classical (regular) computers, which provided an incredible combination of reliability and efficiency.

Now, in a preprint posted on November 5, Pavel Panteleev and Gleb Kalachev of Moscow State University have shown that — at least, in theory — quantum information can be protected from errors just as well as classical information can. They did it by combining two exceptionally compatible classical methods and inventing new techniques to prove their properties.

“It’s a huge achievement by Pavel and Gleb,” said Jens Eberhardt of the University of Wuppertal in Germany.

Researchers develop first fully 3D-printed, flexible OLED display

In a groundbreaking new study, researchers at the University of Minnesota Twin Cities used a customized printer to fully 3D print a flexible organic light-emitting diode (OLED) display. The discovery could result in low-cost OLED displays in the future that could be widely produced using 3D printers by anyone at home, instead of by technicians in expensive microfabrication facilities.

The research is published in Science Advances.

The OLED display technology is based on the conversion of electricity into light using an organic material layer. OLEDs function as high quality , which can be made flexible and used in both large-scale devices such as television screens and monitors as well as handheld electronics such as smartphones. OLED displays have gained popularity because they are lightweight, power-efficient, thin and flexible, and offer a wide viewing angle and high contrast ratio.

Antipodal seismic reflections upon shear wave velocity structures within Earth’s inner core

Technology is increasingly moving towards miniaturization and energy efficiency. This also applies to electronic chips. Light, and optics more broadly, are functional in making compact and portable chips. Researchers from the Photonic Systems Laboratory, headed by Professor Camille Brès, have successfully applied a novel principle for introducing second-order optical nonlinearity into silicon nitride chips. A first reported in the journal Nature Photonics.

/* */