Toggle light / dark theme

Quantum supremacy has been achieved by a more complex quantum computer

A quantum computer made by researchers in China has solved a calculation in 4.2 hours that would take a classical computer thousands of years. This demonstration of what the researchers call “quantum computational advantage” was made using 6 more qubits – quantum bits – than the computer used by the Google team that first demonstrated the feat in 2019.

7 Human Organs on One Chip

Scientists in the U.S. and U.K. have recently grown seven miniature human organs and housed them together on a chip to create a human-on-a-chip, a whole body biomimetic device. These clusters of assembled cells mimic how organs in the body function, both separately and in tandem.

The chip could take the place of animal and tissue testing for drugs in pharmaceutical development, say its creators. It will have to win regulatory approval in each country looking to use it for tests, and it could allow for insights into how organs interact, says Linda Griffith, professor of biological and mechanical engineering at the Massachusetts Institute of Technology.

Griffith heads The PhysioMimetics program at MIT, which has collaborated with CN Bio Innovations, a British company that creates live organ-on-a-chip devices. The $26.3-million development program is funded by the Defense Advanced Research Projects Agency.

Layered Graphene with a Twist Displays Unique Quantum Confinement Effects in 2-D

Understanding how electrons move in 2-D layered material systems could lead to advances in quantum computing and communication.

Scientists studying two different configurations of bilayer graphene —the two-dimensional (2-D), atom.

An atom is the smallest component of an element. It is made up of protons and neutrons within the nucleus, and electrons circling the nucleus.

Harvard cracks DNA storage, crams 700 terabytes of data into a single gram

Circa 2012.


A bioengineer and geneticist at Harvard’s Wyss Institute have successfully stored 5.5 petabits of data — around 700 terabytes — in a single gram of DNA, smashing the previous DNA data density record by a thousand times.

The work, carried out by George Church and Sri Kosuri, basically treats DNA as just another digital storage device. Instead of binary data being encoded as magnetic regions on a hard drive platter, strands of DNA that store 96 bits are synthesized, with each of the bases (TGAC) representing a binary value (T and G = 1 A and C = 0).

To read the data stored in DNA, you simply sequence it — just as if you were sequencing the human genome — and convert each of the TGAC bases back into binary. To aid with sequencing, each strand of DNA has a 19-bit address block at the start (the red bits in the image below) — so a whole vat of DNA can be sequenced out of order, and then sorted into usable data using the addresses.

Google’s Project Taara Wirelessly Transmits 700TB Across a River in 20 Days

Google runs a plethora of aspirational projects to explore one moonshot or another, but only some become real products. The company’s Project Loon internet balloons didn’t make the cut, having shut down in early 2021. However, one aspect of Loon has lived on to become its own Googley project. Google says it has used the Free Space Optical Communications (FSOC) links developed for Project Loon to beam hundreds of terabytes of data nearly five kilometers, no wires necessary.

Now under the purview of the company’s X labs, the little-known Project Taara is already enhancing connectivity in Kenya and India. Google says FSOC is essentially a fiber optic connection (up to 20 Gbps) without the wires, but it requires a direct line of sight. In Africa, Taara is now beaming data across the Congo River from Brazzaville in the Republic of Congo and Kinshasa in the Democratic Republic of Congo. After setting up the links over the past few years, Google is now sharing some of the project’s more impressive metrics.

Project Taara lead Baris Erkmen notes that Project Taara transmitted 700 TB over a recent 20-day period. This helped to back up wired connections in use by Google’s local partner Econet. Testing Taara in Africa makes sense because line-of-sight laser communication falls apart in a foggy locale like Google’s Bay Area home, and the fast-flowing Congo River has made connectivity in the region much more expensive.

/* */