Menu

Blog

Archive for the ‘computing’ category: Page 480

May 13, 2021

Man Who Is Paralyzed Communicates By Imagining Handwriting

Posted by in categories: biotech/medical, computing, neuroscience

By decoding the brain signals involved in handwriting, researchers have allowed a man who is paralyzed to transform his thoughts into words on a computer screen.

May 13, 2021

Why We Can’t Build Our Way Out of the Semiconductor Shortage

Posted by in categories: business, computing

Eight months on, the semiconductor shortage seems likely to stretch into 2022. Increasing chip production is a slow and difficult business.

May 12, 2021

Intel says it has solved a key bottleneck in quantum computing

Posted by in categories: computing, quantum physics

Intel has overcome a quantum computing bottleneck by controlling two qubits with a cryogenic control chip.

May 12, 2021

Mind over matter: brain chip allows paralysed man to write

Posted by in categories: computing, mobile phones, neuroscience

Tokyo (AFP)

Paralysed from the neck down, the man stares intently at a screen. As he imagines handwriting letters, they appear before him as typed text thanks to a new brain implant.

The 65-year-old is “typing” at a speed similar to his peers tapping on a smartphone, using a device that could one day help paralysed people communicate quickly and easily.

May 12, 2021

Physicists unveil the condensation of liquid light in a semiconductor one-atom-thick

Posted by in categories: computing, particle physics, quantum physics

An international team of physicists has shown experimentally for the first time how a Bose-Einstein condensate — tens of thousands of quanta of ‘liquid light’ — is formed in the thinnest monatomic film of a semiconductor crystal. The team includes the head of the Spin Optics Laboratory at St Petersburg University, Professor Alexey Kavokin. This discovery will help create new types of lasers capable of producing qubits — the main integral parts of quantum computers of the future.

May 11, 2021

New neuroelectronic system can read and modify brain circuits

Posted by in categories: biotech/medical, computing, engineering, neuroscience

As researchers learn more about the brain, it has become clear that responsive neurostimulation is becoming increasingly effective at probing neural circuit function and treating neuropsychiatric disorders, such as epilepsy and Parkinson’s disease. But current approaches to designing a fully implantable and biocompatible device able to make such interventions have major limitations: their resolution isn’t high enough and most require large, bulky components that make implantation difficult with risk of complications.

A Columbia Engineering team led by Dion Khodagholy, assistant professor of electrical engineering, has come up with a new approach that shows great promise to improve such devices. Building on their earlier work to develop smaller, more efficient conformable bioelectronic transistors and materials, the researchers orchestrated their devices to create implantable circuits that enable allow reading and manipulation of brain circuits. Their multiplex-then-amplify (MTA) system requires only one amplifier per multiplexer, in contrast to that need an equal number of amplifiers as number of channels.

“It is critical to be able to detect and intervene to treat brain-disorder-related symptoms, such as epileptic seizures, in real time,” said Khodagholy, a leader in bio-and neuroelectronics design. “Not only is our system much smaller and more flexible than current devices, but it also enables simultaneous stimulation of arbitrary waveforms on multiple independent channels, so it is much more versatile.

May 11, 2021

Hologram experts can now create real-life images that move in the air

Posted by in categories: computing, holograms, military, space, weapons

They may be tiny weapons, but Brigham Young University’s holography research group has figured out how to create lightsabers—green for Yoda and red for Darth Vader, naturally—with actual luminous beams rising from them.

Inspired by the displays of science fiction, the researchers have also engineered battles between equally small versions of the Starship Enterprise and a Klingon Battle Cruiser that incorporate photon torpedoes launching and striking the enemy vessel that you can see with the naked eye.

Continue reading “Hologram experts can now create real-life images that move in the air” »

May 11, 2021

Tiny, wireless, injectable chips use ultrasound to monitor body processes

Posted by in categories: bioengineering, biotech/medical, computing

Widely used to monitor and map biological signals, to support and enhance physiological functions, and to treat diseases, implantable medical devices are transforming healthcare and improving the quality of life for millions of people. Researchers are increasingly interested in designing wireless, miniaturized implantable medical devices for in vivo and in situ physiological monitoring. These devices could be used to monitor physiological conditions, such as temperature, blood pressure, glucose, and respiration for both diagnostic and therapeutic procedures.

To date, conventional implanted electronics have been highly volume-inefficient—they generally require multiple chips, packaging, wires, and external transducers, and batteries are often needed for . A constant trend in electronics has been tighter integration of electronic components, often moving more and more functions onto the integrated circuit itself.

Researchers at Columbia Engineering report that they have built what they say is the world’s smallest single– system, consuming a total volume of less than 0.1 mm3. The system is as small as a dust mite and visible only under a microscope. In order to achieve this, the team used ultrasound to both power and communicate with the device wirelessly. The study was published online May 7 in Science Advances.

May 11, 2021

Faster, More Secure Memory Storage: Physicists Find a Novel Way to Switch Antiferromagnetism On and Off

Posted by in categories: computing, mobile phones, physics, security

The findings could lead to faster, more secure memory storage, in the form of antiferromagnetic bits.

When you save an image to your smartphone, those data are written onto tiny transistors that are electrically switched on or off in a pattern of “bits” to represent and encode that image. Most transistors today are made from silicon, an element that scientists have managed to switch at ever-smaller scales, enabling billions of bits, and therefore large libraries of images and other files, to be packed onto a single memory chip.

But growing demand for data, and the means to store them, is driving scientists to search beyond silicon for materials that can push memory devices to higher densities, speeds, and security.

May 10, 2021

Complex shapes of photons to boost future quantum technologies

Posted by in categories: computing, neuroscience, quantum physics

As the digital revolution has now become mainstream, quantum computing and quantum communication are rising in the consciousness of the field. The enhanced measurement technologies enabled by quantum phenomena, and the possibility of scientific progress using new methods, are of particular interest to researchers around the world.

Recently two researchers at Tampere University, Assistant Professor Robert Fickler and Doctoral Researcher Markus Hiekkamäki, demonstrated that two– interference can be controlled in a near-perfect way using the spatial shape of the photon. Their findings were recently published in the prestigious journal Physical Review Letters.

“Our report shows how a complex light-shaping method can be used to make two quanta of light interfere with each other in a novel and easily tuneable way,” explains Markus Hiekkamäki.