Toggle light / dark theme

Semiconductors are small, ubiquitous, and underappreciated. They are the brains of every modern device.

When Nancy Pelosi traveled to Taiwan in August, it made front-page news around the world and raised the specter of an all-out war between the U.S. and China.

Early in October, the Biden administration made a far more decisive move against China — but it barely made the news in Australia.

Biden decided to unequivocally sever China’s access to high-end computer chips (aka semiconductors).


William_Potter/iStock.

Early in October, the Biden administration made a far more decisive move against China – but it barely made the news in Australia.

For the first time, a group of researchers from Universidad Complutense de Madrid, IBM, ETH Zurich, MIT and Harvard University have observed topological phases of matter of quantum states under the action of temperature or certain types of experimental imperfections. The experiment was conducted using quantum simulator at IBM.

Quantum simulators were first conjectured by the Nobel Prize laureate Richard Feynman in 1982. Ordinary classical computers are inefficient at simulating systems of interacting quantum particles These new simulators are genuinely quantum and can be controlled very precisely. They replicate other quantum systems that are harder to manipulate and whose physical properties remain very much unknown.

In an article published in the journal Quantum Information, the researchers describe using a with superconducting qubits at IBM to replicate materials known as topological insulators at finite temperature, and measure for the first time their topological quantum phases.

Well, consumer devices can’t run on lasers just yet. But in recent years, researchers have been working hard to make this dream a reality.

In the most recent breakthrough, a new chip can bend laser light to transmit 1.8 petabits, or over 1 million gigabits, per second. To put things in perspective, that’s nearly twice the world’s internet traffic per second.

This breaks the May 2022 record of 1.02 petabits per second, as reported by New Atlas.

When in 2015, Eileen Brown looked at the ETER9 Project (crazy for many, visionary for few) and wrote an interesting article for ZDNET with the title “New social network ETER9 brings AI to your interactions”, it ensured a worldwide projection of something the world was not expecting.

Someone, in a lost world (outside the United States), was risking, with everything he had in his possession (very little or less than nothing), a vision worthy of the American dream. At that time, Facebook was already beginning to annoy the cleaner minds that were looking for a difference and a more innovative world.

Today, after that test bench, we see that Facebook (Meta or whatever) is nothing but an illusion, or, I dare say, a big disappointment. No, no, no! I am not now bad-mouthing Facebook just because I have a project in hand that is seen as a potential competitor.

I was even a big fan of the “original” Facebook; but then I realized, it took me a few years, that Mark Zuckerberg is nothing more than a simple kid, now a man, who against everything and everyone, gave in to whims. Of him, initially, and now, perforce, of what his big investors, deluded by himself, of what his “metaverse” would be.

We live in very interesting times, especially if you happen to be a tinkerer, hobbyist, or what is commonly called a “maker” these days. From affordable palm-sized computer boards like the Raspberry Pi to the almost magical 3D printers, it has never been easier to bring ideas to life or, at the very least, prototype designs quickly before they hit final production. Not everyone might have access to these parts and tools, though, but those same things have also made it easier to create and sell products that bigger companies would never dare make. Those include niche yet popular designs, like this quirky pocket computer kit that you can assemble on your own to become not just a portable game emulator but a real computer you could use for more serious business, like even developing your own retro-style game on the go.

Designer: Clockwork.

Visual effects (VFX) can help to make videogames more engaging and immersive for players. However, they are often also designed to support players, for instance, by pointing them to specific locations or highlighting helpful game features.

Researchers at University of California, Santa Cruz (UCSC) have recently carried out a study investigating the ways in which VFX can help videogame players to make sense of the virtual worlds and environments they are navigating. Their paper, pre-published on arXiv and presented at the IEEE VIS Workshop on Visualization for the Digital Humanities (VIS4DH), could guide the future development of both and data visualization tools.

“Our study mostly builds upon our engagement with two distinct communities: the data visualization research and the videogame communities,” Henry Zhou, one of the researchers who carried out the study, told TechXplore. “The Computational Media department at UCSC has a mixture of scholars interested in both media artifacts. The paper originated from my colleague Angus G. Forbes’ observation of a general minimalist aesthetic as practicing wisdom in the data visualization research community, especially when it comes to visual effects (VFX) and animation.”

Improved fabrication methods for qubits made from erbium-doped silicon waveguides give these qubits the key prerequisites for becoming a contender for future quantum computers.

From superconducting circuits to single atoms, there are many quantum-bit—or “qubit”—systems to choose from when building a quantum computer. New to the game are qubits made from individual erbium atoms implanted in silicon waveguides. Each of these qubits can be controlled and measured with telecom-wavelength light, making the platform practical to implement. But the platform has unfavorable properties that have put that implementation on hold. Now Andreas Reiserer of the Max Planck Institute of Quantum Optics in Germany and his colleagues have improved the qubit’s fabrication and detection methods, such that it is viable for near-future use in quantum computing technologies [1]. The results suggest that erbium-doped silicon waveguides could make more promising qubits than previously thought.

One problem with previous erbium-doped silicon waveguides came from the uneven clustering of erbium atoms around impurities in the waveguide. This clustering meant that the erbium atoms had different transition frequencies, making it difficult to simultaneously address multiple atoms and to perform basic operations between them—a necessary component of quantum information processing.

In February 2019, JQI Fellow Alicia Kollár, who is also an assistant professor of physics at UMD, bumped into Adrian Chapman, then a postdoctoral fellow at the University of Sydney, at a quantum information conference. Although the two came from very different scientific backgrounds, they quickly discovered that their research had a surprising commonality. They both shared an interest in graph theory, a field of math that deals with points and the connections between them.

Chapman found graphs through his work in —a field that deals with protecting fragile quantum information from errors in an effort to build ever-larger quantum computers. He was looking for new ways to approach a long-standing search for the Holy Grail of quantum error correction: a way of encoding quantum information that is resistant to errors by construction and doesn’t require active correction. Kollár had been pursuing new work in graph theory to describe her photon-on-a-chip experiments, but some of her results turned out to be the missing piece in Chapman’s puzzle.

Their ensuing collaboration resulted in a new tool that aids in the search for new quantum error correction schemes—including the Holy Grail of self-correcting quantum error correction. They published their findings recently in the journal Physical Review X Quantum.