Toggle light / dark theme

Scientists detect new ‘quantum echo’ in superconducting materials

Scientists at the U. S. Department of Energy Ames National Laboratory and Iowa State University have discovered an unexpected “quantum echo” in a superconducting material. This discovery provides insight into quantum behaviors that could be used for next-generation quantum sensing and computing technologies.

Superconductors are materials that carry electricity without resistance. Within these are collective vibrations known as “Higgs modes.” A Higgs mode is a that occurs when its electron potential fluctuates in a similar way to a Higgs boson. They appear when a material is undergoing a superconducting phase transition.

Observing these vibrations has been a long-time challenge for scientists because they exist for a very short time. They also have complex interactions with quasiparticles, which are electron-like excitations that emerge from the breakdown of superconductivity.

New research connects quantum computing power to the security of cryptographic systems

Experts say quantum computing is the future of computers. Unlike conventional computers, quantum computers leverage the properties of quantum physics such as superposition and interference, theoretically outperforming current equipment to an exponential degree.

When a quantum computer is able to solve a problem unfeasible for current technologies, this is called the “.” However, this edge is not guaranteed for all calculations, raising fundamental questions regarding the conditions under which such an advantage exists. While previous studies have proposed various sufficient conditions for quantum advantage, the necessity of these conditions has remained unclear.

Motivated by this , a team of researchers at Kyoto University has endeavored to understand the necessary and sufficient conditions for quantum advantage, using an approach combining techniques from quantum computing and cryptography, the science of coding information securely.

Terabytes of data in a tiny crystal

From punch card-operated looms in the 1800s to modern cellphones, if an object has “on” and “off” states, it can be used to store information.

In a laptop computer, the ones and zeroes that make up the binary language are actually transistors either running at low or high voltage. On a compact disc, the one is a spot where a tiny indented “pit” turns to a flat “land” or vice versa, while a zero represents no change.

Historically, the size of the object cycling through those states has put a limit on the size of the storage device. But now, researchers from the University of Chicago Pritzker School of Molecular Engineering have explored a technique to make the metaphorical ones and zeroes out of crystal defects, each the size of an individual atom, for classical computer memory applications.


UChicago researchers created a ‘quantum-inspired’ revolution in microelectronics, storing classical computer memory in crystal gaps where atoms should be.

First electronic-photonic quantum chip manufactured in commercial foundry

First time quantum light sources, control electronics are tightly integrated on a silicon chip.

A packaged circuit board containing the chip placed under microscope in probe station during an experiment. The first-of-its-kind silicon chip combines both the quantum light-generating components (photonics) with classical electronic control circuits — all packed into an area measuring just one millimeter by one millimeter.

New gene tool leads to better treatments for complex diseases

Genetic changes can signal evidence of disease, but pinpointing which genes and what’s changed can be difficult.

But in a study of traits that offer clues to a person’s —such as lipid and and inflammation—a team of researchers at Case Western Reserve University devised a and tool to improve how genes and genetic changes that cause diseases are identified.

Their new approach could allow doctors to detect and treat so-called cardiometabolic diseases earlier in their development. Their findings were recently published in the journal Nature Communications.

A chaos-modulated metasurface for physical-layer secure communications

With so many people using devices that can be connected to the internet, reliably securing wireless communications and protecting the data they are exchanging is of growing importance. While computer scientists have devised increasingly advanced security measures over the past decades, the most effective techniques rely on complex algorithms and intensive computations, which can consume a lot of energy.

Researchers at Peking University, Southeast University, University of Sannio and other institutes recently introduced a new approach for securing communications both effectively and energy-efficiently, which relies on a reconfigurable metasurface with properties that are modulated by chaotic patterns.

This approach, outlined in a paper published in Nature Communications, is based on an idea conceived by the senior authors Vincenzo Galdi, Lianlin Li and Tie Jun Cui, who oversaw the project. The idea was then realized at Peking University and Southeast University by junior authors JiaWen Xu Menglin Wei and Lei Zhang.

A promising pathway for the electrical switching of altermagnetism

The ability to switch magnetism, or, in other words, to change the orientation of a material’s magnetic moments, using only electricity, could open new opportunities for the efficient storage of data in hard drives and other magnetic memory devices. While the electrical switching of magnetism has been a long-sought-after research goal, it has so far proved to be difficult to realize.

Researchers at Southern University of Science and Technology (SUSTech) in China and Peking University, led by Prof. Haizhou Lu and Prof. X. C. Xie, recently demonstrated the electrical switching of a particular form of magnetism known as altermagnetism, which was first discovered in 2022.

Their paper, published in Physical Review Letters, could have important implications for the development of new technologies based on altermagnetic materials that can be controlled with electrical currents, without the need for external magnetic fields.

Quantum networks of clocks open the door to probe how quantum theory and curved space-time intertwine

Quantum networking is being rapidly developed world-wide. It is a key quantum technology that will enable a global quantum internet: the ability to deploy secure communication at scale, and to connect quantum computers globally. The race to realize this vision is in full swing, both on Earth and in space.

New research, in collaboration between Igor Pikovski at Stevens Institute of Technology, Jacob Covey at the University of Illinois at Urbana-Champaign and Johannes Borregaard at Harvard University, suggests that are more versatile than previously thought.

In the paper titled “Probing Curved Spacetime with a Distributed Atomic Processor Clock”, published in the journal PRX Quantum, the researchers show that this technology can probe how curved space-time affects —a first test of this kind.

Researchers demonstrate error-resistant quantum gates using exotic anyons for computation

The quantum computing revolution draws ever nearer, but the need for a computer that makes correctable errors continues to hold it back.

Through a collaboration with IBM led by Cornell, researchers have brought that revolution one step closer, achieving two major breakthroughs. First, they demonstrated an error-resistant implementation of universal quantum gates, the essential building blocks of quantum computation. Second, they showcased the power of a topological quantum computer in solving hard problems that a conventional computer couldn’t manage.

In the article “Realizing String-Net Condensation: Fibonacci Anyon Braiding for Universal Gates and Sampling Chromatic Polynomials” published in Nature Communications, an between researchers at IBM, Cornell, Harvard University and the Weizman Institute of Science demonstrated, for the first time, the ability to encode information by braiding—moving in a particular order—Fibonacci string net condensate (Fib SNC) anyons, which are exotic quasi-particles, in two dimensional space.

/* */