Menu

Blog

Archive for the ‘computing’ category: Page 330

Oct 5, 2022

Caltech’s Breakthrough New Nanophotonic Chip “Squeezes” More Out of Light

Posted by in categories: computing, quantum physics

Electronic computing and communications have advanced significantly since the days of radio telegraphy and vacuum tubes. In fact, consumer devices now contain levels of processing power and memory that would be unimaginable just a few decades ago.

But as computing and information processing microdevices get ever smaller and more powerful, they are running into some fundamental limits imposed by the laws of quantum physics. Because of this, the future of the field may lie in photonics—the light-based parallel to electronics. Photonics is theoretically similar to electronics but substitutes photons for electrons. They have a huge potential advantage in that photonic devices may be capable of processing data much faster than their electronic counterparts, including for quantum computers.

Oct 4, 2022

Linux 6.0 kernel enhances security with Runtime Verification, improves CPU energy efficiency

Posted by in categories: business, computing, internet, security

Were you unable to attend Transform 2022? Check out all of the summit sessions in our on-demand library now! Watch here.

The open-source Linux operating system is an essential component of the cloud and enterprise application delivery. In fact, every cloud service, even Microsoft, offers Linux-based compute resources and Linux is often the default choice for embedded and internet of things (IoT) devices. Among the major Linux distribution vendors today are IBM’s Red Hat business unit, German vendor SUSE and Canonical, which develops the Ubuntu Linux distribution.

The market for Linux is forecast to grow to $22.15 billion by 2029, according to Fortune Business Insights, up from $6.27 billion in 2022.

Oct 2, 2022

Computer made from swirly magnets can recognise handwritten digits

Posted by in categories: computing, materials

A prototype computer built using a magnetic material called a skyrmion has been programmed to recognise handwritten digits. The approach could be particularly energy-efficient.

Oct 2, 2022

New superconducting qubit testbed benefits quantum information science development

Posted by in categories: computing, military, particle physics, quantum physics, science

If you’ve ever tried to carry on a conversation in a noisy room, you’ll be able to relate to the scientists and engineers trying to “hear” the signals from experimental quantum computing devices called qubits. These basic units of quantum computers are early in their development and remain temperamental, subject to all manner of interference. Stray “noise” can masquerade as a functioning qubit or even render it inoperable.

That’s why physicist Christian Boutan and his Pacific Northwest National Laboratory (PNNL) colleagues were in celebration mode recently as they showed off PNNL’s first functional superconducting qubit. It’s not much to look at. Its case—the size of a pack of chewing gum—is connected to wires that transmit signals to a nearby panel of custom radiofrequency receivers. But most important, it’s nestled within a shiny gold cocoon called a and shielded from stray . When the refrigerator is running, it is among the coldest places on Earth, so very close to absolute zero, less than 6 millikelvin (about −460 degrees F).

The extreme cold and isolation transform the sensitive superconducting device into a functional qubit and slow down the movement of atoms that would destroy the qubit state. Then, the researchers listen for a characteristic signal, a blip on their radiofrequency receivers. The blip is akin to radar signals that the military uses to detect the presence of aircraft. Just as traditional radar systems transmit and then listen for returning waves, the physicists at PNNL have used a low-temperature detection technique to “hear” the presence of a qubit by broadcasting carefully crafted signals and decoding the returning message.

Oct 1, 2022

How Bentley Systems’ 3DFT could conquer the infrastructure metaverse

Posted by in category: computing

Construction data can quickly scale into gigabytes and terabytes of data. The field is complicated because teams use various file formats to design, construct and operate a building or facility. Teams must often load the whole file into proprietary rendering tools before showing off a new design or collaborating on schedules. These files can be even more complex when building out large-scale digital twins of whole cities like Helsinki or Singapore.

Bentley Systems hopes to change that. At a technology demonstration event in London, Bentley showed off a new 3D streaming codec for the infrastructure metaverse called 3DFT. It’s already running on the Epic Unreal Engine, and Bentley plans to support other platforms down the road.

3DFT is not the first format for streaming metaverse data. The GIS industry has been streaming 2D data for years using tiles. And the Open Geospatial Consortium has been working on the 3D Tiles standard to extend streaming into the third dimension.

Sep 30, 2022

Jennifer Garrison, Buck Institute | Reframing Health and Aging through the Lens of Reproduct

Posted by in categories: biotech/medical, computing, life extension, nanotechnology

Foresight Biotech & Health Extension Meeting sponsored by 100 Plus Capital.
Program & apply to join: https://foresight.org/biotech-health-extension-program/

Jennifer Garrison, Buck Institute.
Reframing Health and Aging through the Lens of Reproduct.

Continue reading “Jennifer Garrison, Buck Institute | Reframing Health and Aging through the Lens of Reproduct” »

Sep 30, 2022

What is ‘dark data’? How digital information is quietly sapping energy

Posted by in categories: business, computing, finance, internet, space

Digitalization generated 4 percent of the total greenhouse emissions in 2020.

More than half of the digital data firms generate is collected, processed, and stored for single-use purposes. Often, it is never re-used. This could be your multiple near-identical images held on Google Photos or iCloud, a business’s outdated spreadsheets that will never be used again, or data from internet of things sensors that have no purpose.

This “dark data” is anchored to the real world by the energy it requires. Even data that is stored and never used again takes up space on servers — typically huge banks of computers in warehouses. Those computers and those warehouses all use lots of electricity.

Continue reading “What is ‘dark data’? How digital information is quietly sapping energy” »

Sep 30, 2022

This New Liquid Is Magnetic, and Mesmerizing

Posted by in categories: computing, particle physics

Circa 2019


Lodestone, a naturally-occurring iron oxide, was the first persistently magnetic material known to humans. The Han Chinese used it for divining boards 2,200 years ago; ancient Greeks puzzled over why iron was attracted to it; and, Arab merchants placed it in bowls of water to watch the magnet point the way to Mecca. In modern times, scientists have used magnets to read and record data on hard drives and form detailed images of bones, cells and even atoms.

Throughout this history, one thing has remained constant: Our magnets have been made from solid materials. But what if scientists could make magnetic devices out of liquids?

Continue reading “This New Liquid Is Magnetic, and Mesmerizing” »

Sep 30, 2022

Drawing data at the nanometer scale

Posted by in categories: computing, materials

A method to draw data in an area smaller than 10 nanometers has been proposed in a recent study published in Physical Review Letters

A joint research team led by Professor Daesu Lee (Department of Physics) of POSTECH, Professor Se Young Park (Department of Physics) at Soongsil University, and Dr. Ji Hye Lee (Department of Physics and Astronomy) of Seoul National University has proposed a method for densely storing data by “poking” with a sharp probe. This method utilizes a material in the metastable state, whose properties change easily even with slight stimulation.

A thin film of metastable ferroelectric calcium titanate (CaTiO3) enables the polarization switching of a material even with a slight pressure of a probe: A very weak force of 100 nanonewtons (nN) is more than enough. The joint research team succeeded in making the width of the polarization path smaller than 10 nm by using this force and found the way to dramatically increase the capacity of data . This is because the smaller the size of the path, the more data the single material can store.

Sep 30, 2022

For the longest time: Quantum computing engineers set new standard in silicon chip performance

Posted by in categories: computing, quantum physics

Two milliseconds—or two thousandths of a second—is an extraordinarily long time in the world of quantum computing. On these timescales the blink of an eye—at one 10th of a second—is like an eternity.

Now a team of researchers at UNSW Sydney has broken new ground in proving that ‘spin qubits’—properties of electrons representing the basic units of information in quantum computers—can hold information for up to two milliseconds. Known as ‘coherence time’, the duration of time that qubits can be manipulated in increasingly complicated calculations, the achievement is 100 times longer than previous benchmarks in the same .

Continue reading “For the longest time: Quantum computing engineers set new standard in silicon chip performance” »