Menu

Blog

Archive for the ‘computing’ category: Page 273

May 6, 2022

Scientist’s INSANE NEW Light Speed CPU Changes Everything!

Posted by in categories: computing, Elon Musk, mobile phones

https://www.youtube.com/watch?v=X3FjQmnDu6Q

Do you want your gadgets to be faster? What if your phone can cut the time it takes to.
complete tasks? Or your computer can compute way faster? Most of us do, but with the.
state of current technology, the truth is, they aren’t likely to get much faster than they.
are! For the past decade and a half, the clock rate of single processor cores has stalled.
at a few Gigahertz, and it is getting harder to push the boundaries of the famous.
Moore’s law! However, a new invention by IBM may change all of that! What are optical.
circuits, how do they work, and how will they make your devices faster? Join us as we.
dive into the new optical circuit that surpasses every CPU known to humans!

Disclaimer.
• Our channel is not associated with Elon Musk in ANY way and is purely made for entertainment purposes, based on facts, rumors and fiction. Enjoy Watching.

May 6, 2022

Elon Musk’s Neuralink rival Synchron starts human trials of implants

Posted by in categories: biotech/medical, computing, Elon Musk, neuroscience

Elon Musk’s Neuralink rival Synchron has begun human trials of its brain implant that lets the wearer control a computer using thought alone.

The firm’s Stentrode brain implant, about the size of a paperclip, will be implanted in six patients in New York and Pittsburgh who have severe paralysis.

Continue reading “Elon Musk’s Neuralink rival Synchron starts human trials of implants” »

May 6, 2022

At long last, GPU prices are now dropping below MSRP

Posted by in category: computing

With the GPU industry finally stabilizing after two years of shortages and inflated costs, prices for graphics cards are finally approaching their MSRPs.

May 6, 2022

Quantum mechanics could explain why DNA can spontaneously mutate

Posted by in categories: biotech/medical, computing, quantum physics

The team, part of Surrey’s research program in the exciting new field of quantum biology, have shown that this modification in the bonds between the DNA strands is far more prevalent than has hitherto been thought. The protons can easily jump from their usual site on one side of an energy barrier to land on the other side. If this happens just before the two strands are unzipped in the first step of the copying process, then the error can pass through the replication machinery in the cell, leading to what is called a DNA mismatch and, potentially, a mutation.

In a paper published this week in the journal Communications Physics, the Surrey team based in the Leverhulme Quantum Biology Doctoral Training Center used an approach called open quantum systems to determine the physical mechanisms that might cause the protons to jump across between the DNA strands. But, most intriguingly, it is thanks to a well-known yet almost magical quantum mechanism called tunneling—akin to a phantom passing through a solid wall—that they manage to get across.


The molecules of life, DNA, replicate with astounding precision, yet this process is not immune to mistakes and can lead to mutations. Using sophisticated computer modeling, a team of physicists and chemists at the University of Surrey have shown that such errors in copying can arise due to the strange rules of the quantum world.

Continue reading “Quantum mechanics could explain why DNA can spontaneously mutate” »

May 5, 2022

A new quantum technique could help create planet-sized telescopes

Posted by in categories: computing, quantum physics

The future of astronomy goes far beyond the James Webb Space Telescope.

For example, it’s theoretically possible to use quantum computers as a means for constructing colossal, planet-sized telescopes, according to a study shared to a preprint server and initially reported by New Scientist.

Continue reading “A new quantum technique could help create planet-sized telescopes” »

May 4, 2022

Printable logic circuits comprising self-assembled protein complexes

Posted by in categories: computing, materials

Proteins are promising molecular materials for next-generation electronic devices. Here, the authors fabricated printable digital logic circuits comprising resistors and diodes from self-assembled photosystem I complexes that enable pulse modulation.

May 4, 2022

New ‘impossible’ discovery could make computers 400 times faster

Posted by in categories: computing, materials

Researchers have created one-way superconductivity, paving the way for superconductors to supersede semiconductors in electronics.

May 3, 2022

A conceptual framework for consciousness

Posted by in categories: computing, neuroscience

This article argues that consciousness has a logically sound, explanatory framework, different from typical accounts that suffer from hidden mysticism. The article has three main parts. The first describes background principles concerning information processing in the brain, from which one can deduce a general, rational framework for explaining consciousness. The second part describes a specific theory that embodies those background principles, the Attention Schema Theory. In the past several years, a growing body of experimental evidence—behavioral evidence, brain imaging evidence, and computational modeling—has addressed aspects of the theory. The final part discusses the evolution of consciousness. By emphasizing the specific role of consciousness in cognition and behavior, the present approach leads to a proposed account of how consciousness may have evolved over millions of years, from fish to humans. The goal of this article is to present a comprehensive, overarching framework in which we can understand scientifically what consciousness is and what key adaptive roles it plays in brain function.

May 3, 2022

Unpatched DNS bug affects millions of routers and IoT devices

Posted by in category: computing

A vulnerability in the domain name system (DNS) component of a popular C standard library that is present in a wide range of IoT products may put millions of devices at DNS poisoning attack risk.

A threat actor can use DNS poisoning or DNS spoofing to redirect the victim to a malicious website hosted at an IP address on a server controlled by the attacker instead of the legitimate location.

The library uClibc and its fork from the OpenWRT team, uClibc-ng. Both variants are widely used by major vendors like Netgear, Axis, and Linksys, as well as Linux distributions suitable for embedded applications.

May 3, 2022

Storing 25 exabytes in a 2-inch Kenzan diamond wafer

Posted by in categories: computing, quantum physics

Japanese researcher Makoto Kasu, at Saga University, and a precision diamond jewellery manufacturer have built a 2-inch diamond-coated wafer that can store, they claim, 25 exabytes of data using quantum memory.

Binary data is stored in quantum superpositions using nitrogen vacancies in the diamond material. Currently binary stored is stored as bits, with a value of one or zero, represented by magnetic polarity (north or south), charge in flash (current flows or not) or resistance in ReRAM (high or low). Quantum memory is different in that it stores qubits (quantum bits).

As we understand it, a qubit can have a value of ⎢0⟩ or⎢1⟩ (pronounced “ket 0” and “ket 1”) or a linear combination of both states in any proportion – it does not have a single value. It has a certain probability of being a ⎢0⟩ and another probability of being a ⎢1⟩. This property of a qubit is called superposition and is used in quantum computing, which can use other quantum phenomena such as entanglement and interference.