Menu

Blog

Archive for the ‘computing’ category: Page 248

Oct 25, 2022

Researchers create first quasiparticle Bose-Einstein condensate

Posted by in categories: computing, particle physics, quantum physics

Physicists have created the first Bose-Einstein condensate—the mysterious fifth state of matter—made from quasiparticles, entities that do not count as elementary particles but that can still have elementary-particle properties like charge and spin. For decades, it was unknown whether they could undergo Bose-Einstein condensation in the same way as real particles, and it now appears that they can. The finding is set to have a significant impact on the development of quantum technologies including quantum computing.

A paper describing the process of creation of the substance, achieved at temperatures a hair’s breadth from absolute zero, was published in the journal Nature Communications.

Bose-Einstein condensates are sometimes described as the fifth state of matter, alongside solids, liquids, gases and plasmas. Theoretically predicted in the early 20th century, Bose-Einstein condensates, or BECs, were only created in a lab as recently as 1995. They are also perhaps the oddest state of matter, with a great deal about them remaining unknown to science.

Oct 25, 2022

Scientists Fed the Fibonacci Sequence Into a Quantum Computer and Something Strange Happened

Posted by in categories: computing, quantum physics

By shooting a laser pulse imitating the Fibonacci Sequence into qubits, physicists created a new phase of matter far better at maintaing a quantum state.

Oct 25, 2022

Creating fast, reliable 3D scans of flora and fauna

Posted by in categories: biotech/medical, computing

Reporting in Research Ideas and Outcomes, a Kyushu University researcher has developed a new technique for scanning various plants and animals and reconstructing them into highly detailed 3D models. To date, over 1,400 models have been made available online for public use.

Open any textbook or nature magazine and you will find stunning high-resolution pictures of the diverse flora and fauna that encompass our world. From the botanical illustrations in Dioscorides’ De materia medica (50−70 CE) to Robert Hooke’s sketches of the microscopic world in Micrographia (1665), scientists and artists alike have worked meticulously to draw the true majesty of nature.

Continue reading “Creating fast, reliable 3D scans of flora and fauna” »

Oct 25, 2022

A single chip has managed to transfer the entire internet’s traffic in a single second

Posted by in categories: computing, internet

A single chip has managed to transfer over a petabit-per-second according to research by a team of scientists from universities in Denmark, Sweden, and Japan. That’s over one million gigabits of data per second over a fibre optic cable, or basically the entire internet’s worth of traffic.

The researchers—A. A. Jørgensen, D. Kong, L. K. Oxenløwe—and their team successfully showed a data transmission of 1.84 petabits over a 7.9km fibre cable using just a single chip. That’s not quite as fast as some other alternatives with larger, bulkier systems, which have reached up to 10.66 petabits, but the key here is scale: the proposed system is very compact.

Oct 25, 2022

Decoder uses fMRI brain scans to reconstruct human thoughts

Posted by in categories: biotech/medical, computing, information science, neuroscience

Researchers at the University of Texas at Austin have developed a decoder that uses information from fMRI scans to reconstruct human thoughts. Jerry Tang, Amanda LeBel, Shailee Jain and Alexander Huth have published a paper describing their work on the preprint server bioRxiv.

Prior efforts to create technology that can monitor and decode them to reconstruct a person’s thoughts have all consisted of probes placed in the brains of willing patients. And while such technology has proven useful for research efforts, it is not practical for use in other applications such as helping people who have lost the ability to speak. In this new effort, the researchers have expanded on work from prior studies by applying findings about reading and interpreting brain waves to data obtained from fMRI scans.

Recognizing that attempting to reconstruct brainwaves into individual words using fMRI was impractical, the researchers designed a decoding device that sought to gain an overall understanding of what was going on in the mind rather than a word-for-word decoding. The decoder they built was a that accepted fMRI data and returned paragraphs describing general thoughts. To train their algorithm, the researchers asked two men and one woman to lie in an fMRI machine while they listened to podcasts and recordings of people telling stories.

Oct 25, 2022

Dynamical topological phase realized in a trapped-ion quantum simulator

Posted by in categories: computing, quantum physics

Basically the fibonacci sequence stabilized the quantum computers internal processes better essentially. This may fall into the theory of everything that supersymmetry and the fibonacci sequence can get us closer to a theory of everything even in quantum computers.


A dynamical topological phase with edge qubits that are dynamically protected from control errors, cross-talk and stray fields, is demonstrated in a quasiperiodically driven array of ten 171Yb+ hyperfine qubits in a model trapped-ion quantum processor.

Oct 25, 2022

A Single Laser Transmitted a Second’s Worth of Internet Traffic in Record Time

Posted by in categories: computing, internet

Scientists continue to blow through data transmission records, with the fastest transmission of information between a laser and a single optical chip system now set at 1.8 petabits per second. That’s well in excess of the amount of traffic passing across the entire internet each second.

Here’s another comparison: the average broadband download speed in the US is 167 megabits per second. You need 1,000 megabits to get to a gigabit, and then 1 million gigabits to get up to 1 petabit.

No matter how you present it, 1.8 petabits is a serious amount of data to transmit in a second.

Oct 25, 2022

Researchers develop laser that could ‘reshape the landscape of integrated photonics’

Posted by in category: computing

How do you integrate the advantages of a benchtop laser that fills a room onto a semiconductor chip the size of a fingernail?

Oct 25, 2022

IBM begins installing on-premise quantum computer at Ohio’s Cleveland Clinic

Posted by in categories: computing, health, quantum physics

IBM has begun installing an on-premise quantum computer at a health provider’s data center in Ohio.

Cleveland Clinic and IBM said this month that deployment work of the first private sector onsite, IBM-managed quantum computer in the United States.

Oct 25, 2022

1 Million Gigabit Internet Speed Reached With a Single Chip and Laser

Posted by in categories: computing, internet

Researchers in Europe have developed an efficient way to deliver internet speeds at over 1 million gigabits per second through a single chip and laser system.

The experiment achieved a speed of 1.8 petabits per second, or nearly twice the amount of internet traffic the world transmits at the same rate. Amazingly, the feat was pulled off using only a single optical light source.

The research comes from a team at Technical University of Denmark and Chalmers University of Technology in Sweden. Last week, the group published a peer-reviewed paper (Opens in a new window) in Nature Photonics about the technology.