Toggle light / dark theme

Metal halide perovskites are semiconducting materials with advantageous optoelectronic properties, low defects and low costs of production. In contrast with other emerging semiconductors, these materials can be easily synthesized via affordable solution processing methods.

In recent years, some engineers have been exploring the potential of for creating highly solar cells and light emitting diodes (LEDs). Their favorable characteristics, however, could also facilitate their use for fabricating next-generation , including .

Researchers at Pohang University of Science and Technology in South Korea, the Chinse Academy of Sciences and the University of Electronic Science and Technology of China recently introduced a new strategy to develop transistors based on a metal perovskite, specifically tin perovskite. In their paper, published in Nature Electronics, they showed that the resulting tin perovskite-based transistors could attain performances comparable to those of existing .

Instead of designing their own qubits for study, the team used nature-made ones and focused on ways to control them.

Researchers at the University of Waterloo in Canada have developed a novel and robust way to control individual qubits. This ability is a crucial step as humanity attempts to scale up its computational capacities using quantum computing, a press release said.

Much like silicon-based computers use bits as the basic unit of storing information, quantum computers use quantum bits or qubits. A number of elemental particles, such as electrons and photons, have been used to serve this purpose, wherein the charge or polarization of the light is used to denote the 0 or 1 state of the qubit.

Qualcomm shares surged 4 percent after deal announcement.

In a major win for Qualcomm, the wireless tech company has struck a new chips agreement with Apple. Their previous deal to provide 5G modem chips was inked in 2019 and was set to conclude this year. The new deal signed Monday means it will continue to be a supplier to the iPhone maker through 2026.

The deal also means that Qualcomm will maintain its patent licensing agreement with Apple, which would mean millions in royalty revenue for the chipmaker. Qualcomm shares shot up by 4 percent soon after the deal’s announcement.

Using laser light, researchers have innovated a precise method to control individual barium qubits, advancing prospects for quantum computing.

Researchers have pioneered a groundbreaking technique utilizing laser light to control individual qubits made of barium more robustly than any other method currently known. Reliably controlling qubits is a critical step towards actualizing functional quantum computers of the future.

Developed at the university of waterloo.

Excitingly, the researchers told New Scientist that if kept out of UV light, the products have the potential to last for a very long time. When it ultimately comes time to sunset the device, the substrate can simply be placed in soil, where it will biodegrade — thus naturally separating from the more recyclable computer components that the substrates hold.

The results have been promising. According to a press release, the material was tested by soldering a standard computer chip into it — and the researchers say the mushroom skin did pretty a solid job. And though it’s not ready for production just yet, the hope is that one day this mycelium material will become the substrate norm for printed circuit boards, flexible electronics, and even some medical devices.

“The prototypes produced are impressive,” Andrew Adamatzky, a computer scientist at the University of the West of England, told New Scientist, “and the results are groundbreaking.”

Quantum computers, systems that perform computations by exploiting quantum mechanics phenomena, could help to efficiently tackle several complex tasks, including so-called combinatorial optimization problems. These are problems that entail identifying the optimal combination of variables among several options and under a series of constraints.

Quantum computers that can tackle these problems should be based on reliable hardware systems, which have an intricate all-to-all node connectivity. This connectivity ultimately allows representing arbitrary dimensions of a problem to be directly mapped onto the .

Researchers at University of Minnesota recently developed a new electronic device based on standard complementary metal oxide semiconductor (CMOS) technology that could support this crucial mapping process. This device, introduced in a paper in Nature Electronics, is a physics-based Ising solver comprised of coupled ring oscillators and an all-to-all node connected architecture.

Roman Space Telescope team is integrating a complex electrical harness, crucial for the spacecraft’s communication and power. After a detailed two-year construction and a preparatory “bakeout” process, assembly into the spacecraft is ongoing, with future installations planned for power components.

NASA’s Nancy Grace Roman Space Telescope team has begun integrating and testing the spacecraft’s electrical cabling, or harness, which enables different parts of the observatory to communicate with one another. Additionally, the harness provides power and helps the central computer monitor the observatory’s function via an array of sensors. This brings the mission a step closer to surveying billions of cosmic objects and untangling mysteries like dark energy following its launch by May 2027.

The Nvidia GeForce RTX 5,080 looks to be a couple of years away, as the RTX 4090 is still going strong. Nvidia hasn’t officially announced the card or the next-generation architecture it will be built around, but there are a few key details we’ve gleaned over the last several months.

Whenever it appears, it will have big boots to fill. Nvidia’s GeForce RTX 4,080 is one of the best graphics cards with its superb performance, ray tracing chops, and vigorous frame rate-boosting DLSS 3. Its hefty $1,199 price tag raised a few eyebrows, but if the RTX 5,080 launches with a similar slate of improvements, we could be in for another pricey top-tier card.

Year 2022 Basically what this means is an infinite capacity hard drive.


Exciton polaritons (polaritons herein) in transition-metal dichalcogenide monolayers have attracted significant attention due to their potential for polariton-based optoelectronics. Many of the proposed applications rely on the ability to trap polaritons and to reach macroscopic occupation of their ground energy state. Here, we engineer a trap for room-temperature polaritons in an all-dielectric optical microcavity by locally increasing the interactions between the mathrmWS_2$ excitons and cavity photons. The resulting confinement enhances the population and the first-order coherence of the polaritons in the ground state, with the latter effect related to dramatic suppression of disorder-induced inhomogeneous dephasing. We also demonstrate efficient population transfer into the trap when optically injecting free polaritons outside of its periphery.

In the form of DNADNA, or deoxyribonucleic acid, is a molecule composed of two long strands of nucleotides that coil around each other to form a double helix. It is the hereditary material in humans and almost all other organisms that carries genetic instructions for development, functioning, growth, and reproduction. Nearly every cell in a person’s body has the same DNA. Most DNA is located in the cell nucleus (where it is called nuclear DNA), but a small amount of DNA can also be found in the mitochondria (where it is called mitochondrial DNA or mtDNA).