Toggle light / dark theme

Quantum dots are already moving in the premium display category, particularly through QD-OLED TVs and monitors. The next step could be QDEL, short for “quantum dot electroluminescent,” also known as NanoLED, screens. Not to be confused with the QLED (quantum light emitting diode) tech already available in TVs, QDEL displays don’t have a backlight. Instead, the quantum dots are the light source. The expected result is displays with wider color spaces than today’s QD-OLEDs (quantum dot OLEDs) that are also brighter, more affordable, and resistant to burn-in.

It seems like QDEL is being eyed as one of the most potentially influential developments for consumer displays over the next two years.

If you’re into high-end display tech, QDEL should be on your radar.

Scientists discovered that skyrmions, potential future bits for computer memory, can now move at speeds up to 900 m/s, a significant increase facilitated by the use of antiferromagnetic materials.

An international research team led by scientists from the CNRS[1] has discovered that the magnetic nanobubbles[2] known as skyrmions can be moved by electrical currents, attaining record speeds up to 900 m/s.

Anticipated as future bits in computer memory, these nanobubbles offer enhanced avenues for information processing in electronic devices. Their tiny size[3] provides great computing and information storage capacity, as well as low energy consumption.

Researchers have produced, stored, and retrieved quantum information for the first time, a critical step in quantum networking.

The ability to share quantum information is crucial for developing quantum networks for distributed computing and secure communication. Quantum computing will be useful for solving some important types of problems, such as optimizing financial risk, decrypting data, designing molecules, and studying the properties of materials.

“Interfacing two key devices together is a crucial step forward in allowing quantum networking, and we are really excited to be the first team to have been able to demonstrate this.” —

Three years after introducing its second-generation “neuromorphic” computer chip, Intel on Wednesday announced the company has assembled 1,152 of the parts into a single, parallel-processing system called Hala Point, in partnership with the US Department of Energy’s Sandia National Laboratories.

The Hala Point system’s 1,152 Loihi 2 chips enable a total of 1.15 billion artificial neurons, Intel said, “and 128 billion synapses distributed over 140,544 neuromorphic processing cores.” That is an increase from the previous Intel multi-chip Loihi system, debuted in 2020, called Pohoiki Springs, which used just 768 Loihi 1 chips.

Sandia Labs intends to use the system for what it calls “brain-scale computing research,” to solve problems in areas of device physics, computer architecture, computer science, and informatics.

Engineers and developers at Intel are always working to push the boundaries of what’s possible, leaning on Moore’s Law — the idea that the number of transistors on a single chip will double every two years with a minimal increase in cost.

But over the last five years, Intel has had its ups and downs, demonstrated by the wavering value of its stock. It went from a high of $68 per share to more recently trading at $36 per share.

By investing $100 billion in American factories and innovation, the company hopes to turn that trend around. In late March, the company learned that it had secured $8.5 billion from the Biden administration, paired with another $11 billion in loans, with the goal of bringing chip manufacturing back to the U.S.