Toggle light / dark theme

The study of computational biology is essential to understanding this transition. By exploring how life processes information, we gain insights into the nature of consciousness and intelligence itself. Computational models are key to revealing how systems organize, adapt, and evolve toward greater complexity and self-awareness. This progression suggests a future where intelligence is no longer bound by biological limitations but extends into the realm of artificial systems, creating a symbiotic relationship between humans and machines.

Ultimately, NOOGENESIS challenges traditional scientific paradigms by framing the universe as an informational “self-simulating” entity, where consciousness plays a central role in its evolutionary processes. The origins of life, the evolution of intelligence, and the potential for a post-Singularity future are all part of this grand narrative. By embracing this view, we can cultivate a more comprehensive understanding of the universe and our place within it—one that recognizes the fundamental role of consciousness in shaping reality and guiding evolution toward the apotheosis of Omega Singularity, the final convergence of intelligence and complexity.

A Spain-based startup has successfully demonstrated the capability of its graphene-based brain-computer interface (BCI) to perform precise tumor surgery.

INBRAIN Neuroelectronics, a company specializing in brain-computer interface therapies, successfully implanted its cortical interface in a human patient.

As per the press statement, this is the “world’s first human procedure of its cortical interface in a patient undergoing brain tumor resection.”

The first 200 of you will receive the first month of a Planet Wild membership from me for free. Click on this link https://planetwild.com/r/anastasiinte… use the code ANASTASI29 later. You can cancel at any time. If you want to see how Planet Wild works first, check out their latest YouTube video link https://planetwild.com/r/anastasiinte

The video I mentioned about NVIDIA:
➜ • New Nvidia Chip Has a HUGE Problem.

Timestamps:
00:00 Intro.
05:04 Manufacturing.
06:44 Thermals.
09:29 TSMC
09:58 Intel.
11:15 Challenges.

Support me at Patreon ➜ / anastasiintech.
Let’s connect on LinkedIn ➜ / anastasiintech.
My Deep In Tech Newsletter ➜ https://anastasiintech.substack.com.
More about me: https://anastasiintech.com

A new technology to continuously place individual atoms exactly where they are needed could lead to new materials for devices that address critical needs for the field of quantum computing and communication that cannot be produced by conventional means, say scientists who developed it.

A research team at the Department of Energy’s Oak Ridge National Laboratory created a novel advanced microscopy tool to “write” with atoms, placing those atoms exactly where they are needed to give a material new properties.

“By working at the atomic scale, we also work at the scale where quantum properties naturally emerge and persist,” said Stephen Jesse, a materials scientist who leads this research and heads the Nanomaterials Characterizations section at ORNL’s Center for Nanophase Materials Sciences, or CNMS. “We aim to use this improved access to quantum behavior as a foundation for future devices that rely on uniquely quantum phenomena, like entanglement, for improving computers, creating more secure communications and enhancing the sensitivity of detectors.”

A new study has found that intelligence, in the form of general cognitive abilities such as perception, thinking and remembering, is more important than hitherto thought at predicting a person’s ability to complete common tasks with a PC. The study was published in the International Journal of Human-Computer Studies in August 2024.

“Our research findings are the first clear proof that cognitive abilities have a significant, independent and wide-ranging effect on people’s ability to use a computer. Contrary to what was previously thought, cognitive abilities are as important as previous experience of computer use,” says Aalto University’s Professor Antti Oulasvirta, who studied human-computer interaction extensively with his team.

The findings have implications for digital equality, say the researchers, because everyday user interfaces have simply become too complex to use. Practice alone is no longer enough, with intelligence becoming an equally critical factor in predicting performance in computer tasks.

In quantum computing, scientists often work with arrays of atoms called Rydberg atom arrays, which allow them to simulate quantum systems and perform computations.


Rydberg atoms in optical tweezers are a promising platform for quantum information science. A platform composed of dual-species Rydberg arrays has been realized, offering access to unexplored interaction regimes and crosstalk-free midcircuit control.