Toggle light / dark theme

Engineers at Georgia Tech have designed a process that converts carbon dioxide removed from the air into useful raw material that could be used for new plastics, chemicals, or fuels.

Their approach dramatically reduces the cost and energy required for these (DAC) systems, helping improve the economics of a process the researchers said will be critical to addressing .

The key is a new kind of catalyst and electrochemical reactor design that can be easily integrated into existing DAC systems to produce useful carbon monoxide (CO) gas. It’s one of the most efficient such design ever described in , according to lead researcher Marta Hatzell and her team. They have published the details in Energy & Environmental Science.

A recent study published in the journal Nature by an international team of 279 scientists, including three biologists from the University of Michigan, provides the latest insights into the flowering plant tree of life.

Using 1.8 billion letters of genetic code from more than 9,500 species covering almost 8,000 known flowering plant genera (ca. 60%), this achievement sheds new light on the evolutionary history of flowering plants and their rise to ecological dominance on Earth.

Led by scientists at the Royal Botanic Gardens, Kew, the research team believes the data will aid future attempts to identify new species, refine plant classification, uncover new medicinal compounds, and conserve plants in the face of climate change and biodiversity loss.

Atmospheric water generators can save millions of lives due to new drought conditions even bringing water from air in the desert climates.


  • Water scarcity continues to be a pervasive global challenge, cutting across developed and emerging markets, climates and socio-political dynamics.
  • Atmospheric water generation (AWG) technology is a promising emergency solution that can immediately generate drinkable water using moisture in the air.
  • Distribution of atmospheric water generation technology to communities in need can serve as an effective stopgap measure for municipalities facing immediate clean water shortages.

The statistics underpinning water scarcity are dire and noteworthy – approximately 770 million people lack access to clean water. That is one in ten people on the planet. The average woman in rural Africa walks 6 kilometres (about 3.7 miles) daily to haul 40 pounds of water.

The pervasive nature of the global water crisis, however, is such that it isn’t contained to developing parts of the world. In California, for example, over 2 million people use private wells that access groundwater. However, due to drought conditions, excessive industrial pumping of aquifers and, more recently, deeper drilling of industrial wells, local communities are having an increasingly hard time accessing adequate water. The state’s farms and cities rely on underground aquifers for nearly 40% of their water and this rises in dry years. Nearly 90% of Californians draw on groundwater for part of their water supply.

Land subsidence is overlooked as a hazard in cities, according to scientists from the University of East Anglia (UEA) and Virginia Tech. Writing in the journal Science, Prof Robert Nicholls of the Tyndall Center for Climate Change Research at UEA and Prof Manoochehr Shirzaei of Virginia Tech and United Nations University for Water, Environment and Health, Ontario, highlight the importance of a new research paper analyzing satellite data that accurately and consistently maps land movement across China.

With climate change warming the oceans, this results in drastic consequences for marine life in deep water environments, but can steps be taken to help mitigate these effects? This is what a recent study published in Nature Communications hopes to address as a team of researchers from the United Kingdom investigated how “mixing down” oxygen levels in the ocean could help contribute to a more suitable environment for deep sea life. This study holds the potential to help scientists, conservationists, legislators, and the public better understand the steps that can be taken to mitigate the long-term effects of climate change.

Decreasing oxygen levels in the ocean is a natural phenomenon, but climate change has been predicted to accelerate this process, which could lead to massive decreases in oxygen levels in deep water environments and pose catastrophic consequences for marine life. For the study, the researchers used new methods that combine ocean water data from the Celtic Sea and computer models to ascertain how deep water oxygen levels could be replenished during the warmer summer months. In the end, they determined that summertime storms can result in the “mixing down” of oxygen and decrease this oxygen loss by almost half, which also shows promise for putting floating wind farms in the northern North Sea and Celtic Sea to assist in this process.

“There is growing concern for the health of our coastal oceans as the climate warms because warmer water holds less oxygen,” said Dr. Tom Rippeth, who is a Professor of Physical Oceanography at Bangor University and lead author of the study. “Living creatures in the ocean are reliant on oxygen to survive in the same way as animals on land are. Oxygen is also used up as rotting matter decomposes in the depths of the ocean. This creates a summer oxygen deficit in the deep seas around the UK. Unfortunately, as our climate warms, this deficit is forecast to grow.”

“We need to accelerate and intensify efforts to recover Antarctic meteorites,” said Dr. Harry Zekollari. “The loss of Antarctic meteorites is much like the loss of data that scientists glean from ice cores collected from vanishing glaciers – once they disappear, so do some of the secrets of the universe.”


How can climate change effect the search for meteorites in Antarctica? This is what a recent study published in Nature Climate Change hopes to address as an international team of researchers investigated how melting snow and ice could prevent successful identification of meteorites, of which approximately 60 percent of all meteorites retrieved on Earth have been found in Antarctica. This study holds the potential to help scientists, climate change activists, and legislators better understand the impacts of climate change on science, as meteorites are crucial for gaining greater insight into the formation and evolution of the solar system and beyond.

With a combination of climate models, satellite observations, and artificial intelligence, the researchers estimate that at current rates, they will lose the ability to identify approximately 5,000 meteorites annually, with approximately 24 percent being lost by 2050 and potentially 76 percent by 2100.

Link :


Experts are concerned about the way our planet is rotating due to climate change. For years, scientists have been concerned about the impacts of global warming.

Now, new research has revealed a change in the Earth’s spin due to the melting of the ice poles.

This could see a delay to the ‘leap second’ that was due to be added to the world’s Coordinated Universal Time (UTC) in 2026.

Did Mars once contain life, or even the building block for life? This is what NASA’s Perseverance (Percy) rover has been trying to determine ever since it landed in Jezero Crater, which has shown an overwhelming amount of evidence to have once been site to a massive lakebed. Now, NASA recently announced that Percy has collected its 24th rock sample on March 11th, nicknamed “Comet Geyser”, with this sample being unlike the first 23 in that evidence suggests it was submerged in standing water for an indeterminant amount of time when Mars had liquid water billions of years ago.

Mosaic image of the drill holes where NASA’s Perseverance Mars rover extracted the “Comet Geyser” rock sample. (Credit: NASA/JPL-Caltech/ASU/MSSS)

“To put it simply, this is the kind of rock we had hoped to find when we decided to investigate Jezero Crater,” said Dr. Ken Farley, who is a project scientist for Perseverance and a professor of geochemistry at the California Institute of Technology. “Nearly all the minerals in the rock we just sampled were made in water; on Earth, water-deposited minerals are often good at trapping and preserving ancient organic material and biosignatures. The rock can even tell us about Mars climate conditions that were present when it was formed.”