Toggle light / dark theme

Introducing Aurora: The first large-scale AI foundation model of the atmosphere

When Storm Ciarán battered northwestern Europe in November 2023, it left a trail of destruction. The low-pressure system associated with Storm Ciarán set new records for England, marking it as an exceptionally rare meteorological event. The storm’s intensity caught many off guard, exposing the limitations of current weather-prediction models and highlighting the need for more accurate forecasting in the face of climate change. As communities grappled with the aftermath, the urgent question arose: How can we better anticipate and prepare for such extreme weather events?

A recent study by Charlton-Perez et al. (2024) underscored the challenges faced by even the most advanced AI weather-prediction models in capturing the rapid intensification and peak wind speeds of Storm Ciarán. To help address those challenges, a team of Microsoft researchers developed Aurora, a cutting-edge AI foundation model that can extract valuable insights from vast amounts of atmospheric data. Aurora presents a new approach to weather forecasting that could transform our ability to predict and mitigate the impacts of extreme events—including being able to anticipate the dramatic escalation of an event like Storm Ciarán.

Aurora’s effectiveness lies in its training on more than a million hours of diverse weather and climate simulations, which enables it to develop a comprehensive understanding of atmospheric dynamics. This allows the model to excel at a wide range of prediction tasks, even in data-sparse regions or extreme weather scenarios. By operating at a high spatial resolution of 0.1° (roughly 11 km at the equator), Aurora captures intricate details of atmospheric processes, providing more accurate operational forecasts than ever before—and at a fraction of the computational cost of traditional numerical weather-prediction systems. We estimate that the computational speed-up that Aurora can bring over the state-of-the-art numerical forecasting system Integrated Forecasting System (IFS) is ~5,000x.

Increasing use of renewable energy in US yields billions of dollars of benefits

They found emissions of SO2 and NOx – both linked to increased asthma risk and a variety of other health issues – decreased by a total of 1m metric tons over that three-year period.

To determine the impact of that reduction on public health, the authors “used air quality models to track the population exposed to pollution from power plants”, Millstein said. They also employed epidemiological research to examine the effects of those emissions, and quantified the benefits by using an Environmental Protection Agency dollar value establishing the value of reducing the risk of early death across the population, he said.

All told, the emission reductions from SO2 and NOx provided $249bn of climate and health benefits to the US, the authors found – a figure Millstein said he found was “noteworthy”

Ford teases new F-150 Lightning-based EV SuperTruck ahead of Pikes Peak [Video]

Ford Performance is at it again. The high-performance unit is teasing its new Ford F-150 Lightning-based EV SuperTruck ahead of its official debut. To showcase its abilities, Ford’s new electric SuperTruck will compete in the upcoming Pikes Peak International Hill Climb.

Based on its best-selling electric pickup, Ford’s Performance team tweaked the Lightning-based EV SuperTruck to boost power and aerodynamics.

Ford says running test electric vehicles at Pikes Peak enables it to “push the boundaries of EV powertrains in the most extreme conditions.” The team then relays what it learns to improve Ford’s production vehicles.

‘Dressed’ Laser Aimed at Clouds May be Key to Inducing Rain, Lightning

This laser can simply control the weather to induce rain restoring regions back to their original states. It could also prevent weather aswell too. This could be used in cities to control the weather.


The adage “Everyone complains about the weather but nobody does anything about it,” may one day be obsolete if researchers at the University of Central Florida’s College of Optics & Photonics and the University of Arizona further develop a new technique to aim a high-energy laser beam into clouds to make it rain or trigger lightning.

The solution? Surround the beam with a second beam to act as an energy reservoir, sustaining the central beam to greater distances than previously possible. The secondary “dress” beam refuels and helps prevent the dissipation of the high-intensity primary beam, which on its own would break down quickly. A report on the project, “Externally refueled optical filaments,” was recently published in Nature Photonics.

Water condensation and lightning activity in clouds are linked to large amounts of static charged particles. Stimulating those particles with the right kind of laser holds the key to possibly one day summoning a shower when and where it is needed.

Bangladesh evacuates hundreds of thousands as a severe cyclone approaches from the Bay of Bengal

NEW DELHI (AP) — Bangladesh evacuated nearly 800,000 people from vulnerable areas on Sunday as the country and neighboring India awaited the arrival of a severe cyclone that has formed over the Bay of Bengal. The storm is expected to cross Bangladesh and India’s West Bengal coasts around midnight Sunday. The India Meteorological Department said it is expected to reach maximum wind speeds of up to 120 kilometers per hour (75 mph), with gusts up…

Diamonds grown at normal pressure in just 15 minutes

Diamonds are famously formed under high pressure and temperature, which is partly why they’re so valuable. But now, scientists have created diamonds in a lab under regular pressure in just 15 minutes.

Diamonds are basically just plain old carbon that’s been put under immense pressure and temperature, causing the atoms to crystallize into a particular structure. On Earth, the only place with the right natural conditions is deep in the mantle, hundreds of miles down. Only later are they brought closer to the surface, hitching rides in volcanic eruptions, which makes them pretty rare. Couple that with some of the most insidious marketing in history, and you’ve got a highly sought-after little rock.

Scientists have been growing diamonds in labs for decades, but it usually still needs those extreme conditions – almost 50,000 atmospheres of pressure, and temperatures of about 1,500 °C (2,732 °F). But a new technique has now produced diamonds under normal pressure levels and cooler temperatures.

Research reveals scale of the EU’s dependency on imports for critical minerals needed for green transition

The climate transition is a materials transition. Decades of international diplomacy around oil, gas and pipelines are now giving way to conversations around the supply of critical raw materials. And not before time: to meet the EU’s energy and climate targets, we need to build the right technologies, in the right quantities, at the right speed. The problem is that many of these technologies are built with materials imported from just a handful of countries.

Smelting Steel With Sunlight: New Solar Trap Tech Could Help Decarbonize Industrial Heat

Some of the hardest sectors to decarbonize are industries that require high temperatures like steel smelting and cement production. A new approach uses a synthetic quartz solar trap to generate temperatures of over 1,000 degrees Celsius (1,832 degrees Fahrenheit)—hot enough for a host of carbon-intensive industries.

While most of the focus on the climate fight has been on cleaning up the electric grid and transportation, a surprisingly large amount of fossil fuel usage goes into industrial heat. As much as 25 percent of global energy consumption goes towards manufacturing glass, steel, and cement.

Electrifying these processes is challenging because it’s difficult to reach the high temperatures required. Solar receivers, which use thousands of sun-tracking mirrors to concentrate energy from the sun, have shown promise as they can hit temperatures of 3,000 C. But they’re very inefficient when processes require temperatures over 1,000 C because much of the energy is radiated back out.

Dr. Diane DiEuliis — NDU — Preparing National Security Leaders For The Next Generation Of Threats

Episode Disclaimer — The views presented in this episode are those of the speaker and do not necessarily represent the views of the United States Department of Defense (DoD) or its components.

Dr. Diane DiEuliis, Ph.D. is a Distinguished Research Fellow at National Defense University (NDU — https://www.ndu.edu/), an institution of higher education, funded by the United States Department of Defense, aimed at facilitating high-level education, training, and professional development of national security leaders. Her research areas focus on emerging biological technologies, biodefense, and preparedness for biothreats. Specific topic areas under this broad research portfolio include dual-use life sciences research, synthetic biology, the U.S. bioeconomy, disaster recovery, and behavioral, cognitive, and social science as it relates to important aspects of deterrence. Dr. DiEuliis currently has several research grants in progress, and teaches in foundational professional military education.

Prior to joining NDU, Dr. DiEuliis was Deputy Director for Policy, and served as Deputy Assistant Secretary for Policy and Planning in the Office of the Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services. She coordinated policy and research in support of domestic and international health emergencies, such as Hurricane Sandy, and Ebola outbreaks. She was responsible for implementation of the Pandemic All-Hazards Preparedness Act, the National Health Security Strategy, and supported the Public Health Emergency Medical Countermeasures Enterprise (PHEMCE).

From to 2007 to 2011, Dr. DiEuliis was the Assistant Director for Life Sciences and Behavioral and Social Sciences in the Office of Science and Technology Policy (OSTP) in the Executive Office of the President. During her tenure at the White House, she was responsible for developing policy in areas such as biosecurity and biodefense, synthetic biology, social and behavioral science, scientific collections, and biotechnology. Dr. DiEuliis also worked to help coordinate agency response to public health issues such as the H1N1 flu.

Prior to working at OSTP, Dr. DiEuliis was a program director at the National Institutes of Health (NIH), where she managed a diverse portfolio of neuroscience research in neurodegenerative diseases. She completed a fellowship at the University of Pennsylvania in the Center for Neurodegenerative Disease Research and completed her postdoctoral research in the NIH Intramural research program, where she focused on cellular and molecular neuroscience.

Dr. DiEuliis is a National Merit Scholar, and has a Ph.D. in biology from the University of Delaware in Newark, Delaware. She is the author of over 70 publications.