Toggle light / dark theme

We spend our lives surrounded by hi-tech materials and chemicals that make our batteries, solar cells and mobile phones work. But developing new technologies requires time-consuming, expensive and even dangerous experiments.

Luckily we now have a secret weapon that allows us to save time, money and risk by avoiding some of these experiments: computers.

Thanks to Moore’s law and a number of developments in physics, chemistry, computer science and mathematics over the past 50 years (leading to Nobel Prizes in Chemistry in 1998 and 2013) we can now carry out many experiments entirely on computers using modelling.

Read more

We spend our lives surrounded by high-tech materials and chemicals that make our batteries, solar cells and mobile phones work. But developing new technologies requires time-consuming, expensive and even dangerous experiments.

Luckily we now have a secret weapon that allows us to save time, money and risk by avoiding some of these experiments: computers.

Thanks to Moore’s law and a number of developments in physics, chemistry, computer science and mathematics over the past 50 years (leading to Nobel Prizes in chemistry in 1998 and 2013) we can now carry out many experiments entirely on computers using modeling.

Read more

Interesting work on solar energy and Q-dot photosensitizers.


Interfacial triplet-triplet energy transfer is used to significantly extend the exciton lifetime of cadmium selenide nanocrystals in an experimental demonstration of their molecular-like photochemistry.

Photosensitizers are an essential component of solar energy conversion processes, in which they are used to generate the highly reactive excited states that enable energy conversion (e.g., photochemical upconversion).1, 2 Typically, molecular triplet photosensitizers are used for such applications, but to improve the solar energy conversion process, the identification and preparation of next-generation triplet photosensitizers is required. However, the design of such photosensitizers—suitable for solar energy conversion and photocatalytic applications—remains a challenge.3

Like this feature on QC.


If you have trouble wrapping your mind around quantum physics, don’t worry — it’s even hard for supercomputers. The solution, according to researchers from Google, Harvard, Lawrence Berkeley National Laboratories and others? Why, use a quantum computer, of course. The team accurately predicted chemical reaction rates using a supercooled quantum circuit, a result that could lead to improved solar cells, batteries, flexible electronics and much more.

Chemical reactions are inherently quantum themselves — the team actually used a quote from Richard Feynman saying “nature isn’t classical, dammit.” The problem is that “molecular systems form highly entangled quantum superposition states, which require many classical computing resources in order to represent sufficiently high precision,” according to the Google Research blog. Computing the lowest energy state for propane, a relatively simple molecule, takes around ten days, for instance. That figure is required in order to get the reaction rate.

That’s where the “Xmon” supercooled qubit quantum computing circuit (shown above) comes in. The device, known as a “variational quantum eigensolver (VQE)” is the quantum equivalent of a classic neural network. The difference is that you train a classical neural circuit (like Google’s DeepMind AI) to model classical data, and train the VQE to model quantum data. “The quantum advantage of VQE is that quantum bits can efficiently represent the molecular wave function, whereas exponentially many classical bits would be required.”

Lumee™ tissue-O2 monitoring system slated to be available this year in Europe

SOUTH SAN FRANCISCO, Calif., May 16, 2016 — Profusa, Inc. announced today that it was selected by Pioneers, the global business relationship builder, to showcase the company’s “wear-and-forget” Lumee™ biosensor technology at the Pioneers Festival held at the prestigious Hofburg Imperial Palace in Vienna, Austria, May 24th-25th.

Making health and disease monitoring as easy as turning on your smart phone, the company’s tissue-integrated sensors for long-term, continuous tracking of body chemistry will be highlighted by Ben Hwang, Profusa’s chairman and chief executive officer, in a talk entitled, “Beyond Fitness Trackers: Let Your Body Speak.”

Read more

Way cool! Your stitches monitors and reports your progress to your doctor/s.

BTW — In 1999, I told a guy from Diamond Intl. that the thread in our clothing would be able to do this in the next 15 to 20 years. He laughed at me; never say never.


For the first time, researchers led by Tufts University engineers have integrated nano-scale sensors, electronics and microfluidics into threads — ranging from simple cotton to sophisticated synthetics — that can be sutured through multiple layers of tissue to gather diagnostic data wirelessly in real time, according to a paper published online July 18 in Microsystems & Nanoengineering. The research suggests that the thread-based diagnostic platform could be an effective substrate for a new generation of implantable diagnostic devices and smart wearable systems.

The researchers used a variety of conductive threads that were dipped in physical and chemical sensing compounds and connected to wireless electronic circuitry to create a flexible platform that they sutured into tissue in rats as well as in vitro. The threads collected data on tissue health (e.g. pressure, stress, strain and temperature), pH and glucose levels that can be used to determine such things as how a wound is healing, whether infection is emerging, or whether the body’s chemistry is out of balance. The results were transmitted wirelessly to a cell phone and computer.

Profusa (South San Francisco, CA) has won a $7.5 million grant from the Defense Advanced Research Projects Agency (DARPA) and the U.S. Army Research Office for further development of its tissue integrated biosensor technology, the company said Tuesday.

The U.S. military sees value in the technology improving mission efficiency through real-time monitoring of combat soldier health status.

“Profusa’s vision is to replace a point-in-time chemistry panel that measures multiple bio­markers, such as oxygen, glucose, lactate, urea, and ions with a biosensor that provides a continuous stream of wireless data,” Ben Hwang, PhD, Profusa’s chairman and CEO, said in a news release.

Read more

Woo and other entrepreneurs are using fasts and other tricks to “hack” their brain chemistry like they would a computer, hoping to give themselves an edge as they strive to dream up the next billion-dollar idea. Known by insiders as “biohacking,” the push for cognitive self-improvement is gaining momentum in the Silicon Valley tech world, where workers face constant pressure to innovate and produce at the highest levels.

Read more

Great work by my friends at ORNL.


In a review paper published in ACS Nano, Olga Ovchinnikova and colleagues provide an overview of existing paths to 3D materials, but the ultimate goal is to create and customize material at the atomic scale. Material would be assembled atom by atom, much like children can use Legos to build a car or castle brick by brick. This concept, known as directed matter, could lead to virtually perfect materials and products because many limitations of conventional manufacturing techniques would be eliminated.

“Being able to assemble matter atom by atom in 3D will enable us to design materials that are stronger and lighter, more robust in extreme environments and provide economical solutions for energy, chemistry and informatics,” Ovchinnikova said.

Fundamentally, directed matter eliminates the need to remove unwanted material by lithography, etching or other traditional methods. These processes have served society well, researchers noted, but the next generation of materials and products require a new approach.