Toggle light / dark theme

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic components or the transmission of signals. High-frequency electromagnetic fields can only be shielded with conductive shells that are closed on all sides. Often thin metal sheets or metallized foils are used for this purpose. However, for many applications such a shield is too heavy or too poorly adaptable to the given geometry. The ideal solution would be a light, flexible and durable material with extremely high shielding effectiveness.

Aerogels against electromagnetic radiation

A breakthrough in this area has now been achieved by a research team led by Zhihui Zeng and Gustav Nyström. The researchers are using nanofibers of as the basis for an aerogel, which is a light, highly porous material. Cellulose fibers are obtained from wood and, due to their , enable a wide range of chemical modifications. They are therefore a highly popular research object. The crucial factor in the processing and modification of these cellulose nanofibres is to be able to produce certain microstructures in a defined way and to interpret the effects achieved. These relationships between structure and properties are the very field of research of Nyström’s team at Empa.

face_with_colon_three Circa 2012


Scientists have been able to generate the world’s fastest laser pulse with a beam shot for 67 attoseconds (0.000000000000000067 seconds). This breaks the previous record of 80 attoseconds that was established in 2008. This could help engineers see extremely rapid quantum mechanical processes, like the movements of electrons during chemical reactions.

The researchers published their findings in the journal Optics Letters. This will allow the study of electron motions with attosecond pulses. The blast was obtained by sending pulses from a titanium-sapphire near-infrared laser through a system known as double optical gating (DOG) in which the gate concentrates the energy of extreme ultraviolet light pulses and focuses them on a cell filled with neon gas.

If there’s one myth that has persisted through the years without much evidence, it’s this: multiply your dog’s age by seven to calculate how old they are in “human years.” In other words, the old adage says, a four-year-old dog is similar in physiological age to a 28-year-old person.

But a new study by researchers at University of California San Diego School of Medicine throws that out the window. Instead, they created a formula that more accurately compares the ages of humans and dogs. The formula is based on the changing patterns of methyl groups in dog and human genomes — how many of these chemical tags and where they’re located — as they age. Since the two species don’t age at the same rate over their lifespans, it turns out it’s not a perfectly linear comparison, as the 1:7 years rule-of-thumb would suggest.

With every droplet that we can’t see, touch, or feel dispersed into the air, the threat of spreading COVID-19 persists. It’s become increasingly critical to keep these heavy droplets from lingering—especially on surfaces, which are welcoming and generous hosts.

Thankfully, our chemical cleaning products are effective, but using them to disinfect larger settings can be expensive, dangerous, and time-consuming. Across the globe there are thousands of warehouses, , schools, and other spaces where cleaning workers are at risk.

With that in mind, a team from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), in collaboration with Ava Robotics and the Greater Boston Food Bank (GBFB), designed a new robotic system that powerfully disinfects surfaces and neutralizes aerosolized forms of the coronavirus.

In molecular biology, chaperones are a class of proteins that help regulate how other proteins fold. Folding is an important step in the manufacturing process for proteins. When they don’t fold the way they’re supposed to, it can lead to the development of diseases such as cancer.

Researchers at the Sloan Kettering Institute have uncovered important findings about what causes chaperones to malfunction as well as a way to fix them when they go awry. The discovery points the way to a new approach for developing targeted drugs for cancer and other diseases, including Alzheimer’s disease.

“Our earlier work showed that defects in chaperones could lead to widespread changes in cells, but no one knew exactly how it happened,” says SKI scientist Gabriela Chiosis, senior author of a study published June 30 in Cell Reports. “This paper finally gets into the nuts and bolts of that biochemical mechanism. I think it’s a pretty big leap forward.”

This can make a huge difference in some parts.


Biohydrogel is more than just a water absorption and storage material that helps plants survive drought periods. It also functions as a soil conditioner that traps – and thereby reduces the loss of – agrochemicals like fertilizers, pesticides and herbicides. This means Biohydrogel not only decreases agricultural costs but also helps prevent environmental pollution.

If you are interested in our product, please contact our Technology Transfer Office:

Quantum computers have the potential to revolutionise the way we solve hard computing problems, from creating advanced artificial intelligence to simulating chemical reactions in order to create the next generation of materials or drugs. But actually building such machines is very difficult because they involve exotic components and have to be kept in highly controlled environments. And the ones we have so far can’t outperform traditional machines as yet.

But with a team of researchers from the UK and France, we have demonstrated that it may well be possible to build a quantum computer from conventional silicon-based electronic components. This could pave the way for large-scale manufacturing of quantum computers much sooner than might otherwise be possible.

The theoretical superior power of quantum computers derives from the laws of nanoscale or “quantum” physics. Unlike conventional computers, which store information in binary bits that can be either “0” or “1”, quantum computers use quantum bits (or qubits) that could be in a combination of “0” and “1” at the same time. This is because quantum physics allows particles to be in different states or places simultaneously.

As part of their studies, the scientists also examined the mechanisms by which some of the modified drugs were altered by the cultured microbiomes. To understand exactly how the transformations occurred, they traced the source of the chemical transformations to particular bacterial species and to genes within those bacteria. They also showed that microbiome-derived metabolic reactions discoverable using their approach could be recapitulated in a mouse model, which is the first step in adapting the approach for human drug development.

The framework could feasibly be used to aid drug discovery by identifying potential drug-microbiome interactions early in development, and so inform on formulation changes. It could also be used during clinical trials to better analyze drug toxicity and efficacy, and be harnessed to help personalize treatment to the microbiome of each patient. This could help to predict how a certain drug will behave, and suggest changes to the therapeutic strategy if undesired effects are predicted. “Our framework identifies novel drug-microbiome interactions that vary between individuals and demonstrates how the gut microbiome might be used in drug development and personalized medicine,” the team concluded.

“This is a case where medicine and ecology collide,” said Jaime Lopez, a graduate student in the Lewis-Sigler Institute for Integrative Genomics and a co-first author on the study, who contributed the computational and quantitative analysis of the data. “The bacteria in these microbial communities help each other survive, and they influence each other’s enzymatic profiles. This is something you would never capture if you didn’t study it in a community.”


Researchers at Princeton University have developed a way of systematically evaluating how the microbial communities in our intestines can chemically transform, or metabolize, drugs that are taken orally, in ways that impact on their efficacy and potentially safety. The new methodology—which the team used to evaluate the gut microbiome’s effect on hundreds of common medications already on the market—provides a more complete picture of how gut bacteria metabolize drugs. The framework could also feasibly help in the development of drugs that are more effective, have fewer side effects, and are personalized to an individual’s microbiome.

Yan McMullen had never heard of the USC Dornsife College of Letters, Arts and Sciences when he started casting about for a graduate chemistry program. But on the recommendation of one of his professors, he sent an email to the College’s Professor of Chemistry Stephen Bradforth proposing an experiment to tease out what makes a metal really a metal.

The proposal would not only turn into his Ph.D. thesis but a major scientific breakthrough.

McMullen’s proposal was not an easy sell. The experiment would be expensive and possibly dangerous.