Toggle light / dark theme

New Insights into the Chemical Composition of Ayahuasca

Ayahuasca is a psychedelic beverage originally from the Amazon rainforest used in different shamanic settings for medicinal, spiritual, and cultural purposes. It is prepared by boiling in water an admixture of the Amazonian vine Banisteriopsis caapi, which is a source of β-carboline alkaloids, with plants containing N, N-dimethyltryptamine, usually Psychotria viridis. While previous studies have focused on the detection and quantification of the alkaloids present in the drink, less attention has been given to other nonalkaloid components or the composition of the solids suspended in the beverage, which may also affect its psychoactive properties. In this study, we used nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) to study the composition of ayahuasca samples, to determine their alkaloid qualitative and quantitative profiles, as well as other major soluble and nonsoluble components. For the first time, fructose was detected as a major component of the samples, while harmine (a β-carboline previously described as an abundant alkaloid in ayahuasca) was found to be present in the solids suspended in the beverage. In addition, N, N-dimethyltryptamine (DMT), harmine, tetrahydroharmine, harmaline, and harmol were identified as the major alkaloids present in extracts of all samples. Finally, a novel, easy, and fast method using quantitative NMR was developed and validated to simultaneously quantify the content of these alkaloids found in each ayahuasca sample.

Ayahuasca, commonly translated from the Quechua language as “vine of the spirits” or “vine of the dead”, is a psychedelic beverage originally from the Amazon rainforest used in different shamanic settings for a variety of medicinal, spiritual, and cultural purposes.1 It is prepared by boiling in water an admixture of the vine Banisteriopsis caapi, which is a source of β-carboline alkaloids, and other plants containing N, N-dimethyltryptamine (DMT), usually Psychotria viridis ( Figure Figure1 1 ) or Diplopterys cabrerana, (where the preparation name is usually referred to as yagé).2.

Seemingly Impossible: Nanostructure Compresses Light 10,000 Times Thinner Than a Human Hair

Until recently, physicists widely believed that it was impossible to compress light below the so-called diffraction limit, except when utilizing metal nanoparticles, which also absorb light. As a result, it seemed to be impossible to compress light strongly in dielectric materials like silicon, which are essential for information technologies and had the significant advantage of not absorbing light. Interestingly, it was theoretically shown that the diffraction limit does not apply to dielectrics back in 2006. However, no one has been able to demonstrate this in the actual world due to the fact that it requires such complex nanotechnology that no one has yet been able to create the required dielectric nanostructures.

A research team from the Technical University of Denmark has created a device known as a “dielectric nanocavity” that successfully concentrates light in a volume 12 times smaller than the diffraction limit. The finding is groundbreaking in optical research and was recently published in the journal Nature Communications.

Nature Communications is a peer-reviewed, open access, multidisciplinary, scientific journal published by Nature Research. It covers the natural sciences, including physics, biology, chemistry, medicine, and earth sciences. It began publishing in 2010 and has editorial offices in London, Berlin, New York City, and Shanghai.

Four-million-mile battery is now a reality

Dahn, a world-renowned battery scientist and NSERC/Tesla Canada Chair, presented the exciting news during his keynote presentation (titled: More than a million miles and a century of life) at the international battery seminar (IBS) held 28–31 March 2022 in Orlando, Florida.

The term “Million Mile” battery first came to life after Dahn’s 2019 open access publication in Journal of The Electrochemical Society (JES) stating “we conclude that cells of this type should be able to power an electric vehicle for over 1.6 million kilometers (1 million miles) and last at least two decades in grid storage”.

A crystal shape conundrum is finally solved

A crystal’s shape is determined by its inherent chemistry, a characteristic that ultimately determines its final form from the most basic of details. But sometimes the lack of symmetry in a crystal makes the surface energies of its facets unknowable, confounding any theoretical prediction of its shape.

Theorists at Rice University say they’ve found a way around this conundrum by assigning arbitrary latent energies to its surfaces or, in the case of two-dimensional materials, its edges.

Yes, it seems like cheating, but in the same way a magician finds a select card in a deck by narrowing the possibilities, a little algebraic sleight-of-hand goes a long way to solve the problem of predicting a crystal’s shape.

Highly integrated watch for noninvasive continual glucose monitoring

This article reports a highly integrated watch for noninvasive continual blood glucose monitoring. The watch employs a Nafion-coated flexible electrochemical sensor patch fixed on the watchband to obtain interstitial fluid (ISF) transdermally at the wrist. This reverse iontophoresis-based extraction method eliminates the pain and inconvenience that traditional fingerstick blood tests pose in diabetic patients’ lives, making continual blood glucose monitoring practical and easy. All electronic modules, including a rechargeable power source and other modules for signal processing and wireless transmission, are integrated onto a watch face-sized printed circuit board (PCB), enabling comfortable wearing of this continual glucose monitor. Real-time blood glucose levels are displayed on the LED screen of the watch and can also be checked with the smartphone user interface.

Researchers publish 31,618 molecules with potential for energy storage in batteries

Scientists from the Dutch Institute for Fundamental Energy Research (DIFFER) have created a database of 31,618 molecules that could potentially be used in future redox-flow batteries. These batteries hold great promise for energy storage. Among other things, the researchers used artificial intelligence and supercomputers to identify the molecules’ properties. Today, they publish their findings in the journal Scientific Data.

In recent years, chemists have designed hundreds of molecules that could potentially be useful in flow batteries for energy storage. It would be wonderful, researchers from DIFFER in Eindhoven (the Netherlands) imagined, if the properties of these molecules were quickly and easily accessible in a database. The problem, however, is that for many molecules the properties are not known. Examples of molecular properties are redox potential and water solubility. Those are important since they are related to the power generation capability and energy density of redox flow batteries.

To find out the still-unknown properties of molecules, the researchers performed four steps. First, they used a and smart algorithms to create thousands of virtual variants of two types of molecules. These molecule families, the quinones and aza aromatics, are good at reversibly accepting and donating electrons. That is important for batteries. The researchers fed the computer with backbone structures of 24 quinones and 28 aza-aromatics plus five different chemically relevant side groups. From that, the computer created 31,618 different molecules.

Chiral orbit currents create new quantum state

Physicists have discovered a new quantum state in a material with the chemical formula Mn3SiTe6. The new state forms due to long-theorized but never previously observed internal currents that flow in loops around the material’s honeycomb-like structure. According to its discoverers, this new state could have applications for quantum sensors and memory storage devices for quantum computers.

Mn3SiTe6 is a ferrimagnet, meaning that its component atoms have opposing but unequal magnetic moments. It usually behaves like an insulator, but when physicists led by Gang Cao of the University of Colorado, Boulder, US, exposed it to a magnetic field applied along a certain direction, they found that it became dramatically more conducting – almost like it had morphed from being a rubber to a metal.

This effect, known as colossal magnetoresistance (CMR), is not itself new. Indeed, physicists have known about it since the 1950s, and it is now employed in computer disk drives and many other electronic devices, where it helps electric currents shuttle across along distinct trajectories in a controlled way.

Photochemistry is confirmed on an exoplanet

The latest data improves our understanding of how clouds in “hot Jupiter” exoplanets like this might appear up close. They are likely to be broken up, rather than a single, uniform blanket over the planet.


Photochemistry is the result of light triggering chemical reactions. This process is fundamental to life on Earth: it makes ozone, for example, which protects us from harsh ultraviolet (UV) rays.

New observations of WASP-39 b, a Jupiter-sized planet orbiting a Sun-like star found 700 light years away, confirm the presence of a never-before-seen molecule in the atmosphere – sulfur dioxide – among other details.

The James Webb Space Telescope has previously studied WASP-39 b. In August, it captured the first clear evidence for carbon dioxide. Now, it has focused its array of highly sensitive instruments on the planet once again, revealing not just an isolated ingredient, but a full menu of atoms, molecules, and even signs of active chemistry and clouds in the broiling atmosphere. This latest data, far more detailed than any previous telescope, shows the amazing capabilities of Webb, and hints at the potential for future discoveries that may reveal biosignatures.

Psychedelics: Chemicals, Consciousness, and Creativity

Could psychedelics make you more creative? Shift your mind, connect you to others, and help you access a younger, more malleable version of yourself? Activist Rick Doblin, neuroscientist Gül Dölen, and musician Reggie Watts join Brian Greene for a mind-bending and multidisciplinary conversation about the promises and pitfalls of these “magic” molecules and their impact on creativity, connection, and consciousness.

This program is part of the Big Ideas series, supported by the John Templeton Foundation.

Participants:
Rick Doblin.
Gül Dölen.
Reggie Watts.

Moderator:
Brian Greene.

Thumbnail image courtesy of: William Horton Photography.

Share your thoughts on this program through a short survey: