Menu

Blog

Archive for the ‘chemistry’ category: Page 218

Nov 29, 2021

Corny Lithium-Ion Batteries Could Hold Quadruple the Charge

Posted by in categories: chemistry, energy, nanotechnology, sustainability, transportation

The extra juice comes from a secret ingredient…corn starch.


Could a simple materials change make electric car batteries able to four times more energy? Scientists in South Korea think so. In a new paper in the American Chemical Society’s Nano Letters, a research team details using silicon and repurposed corn starch to make better anodes for lithium ion batteries.

This team is based primarily in the Korea Institute of Science and Technology (KIST), where they’ve experimented with microemulsifying silicon, carbon, and corn starch into a new microstructured composite material for use as a battery anode. This is done by mixing silicon nanoparticles and corn starch with propylene gas and heating it all to combine.

Continue reading “Corny Lithium-Ion Batteries Could Hold Quadruple the Charge” »

Nov 27, 2021

A 3D ink made of living cells for creating living structures

Posted by in categories: bioengineering, biotech/medical, chemistry

A team of researchers from Harvard University and Brigham and Women’s Hospital, Harvard Medical School, has developed a type of living ink that can be used to print living materials. In their paper published in the journal Nature Communications, the group describes how they made their ink and possible uses for it.

For several years, microbial engineers have been working to develop a means to create living materials for use in a wide variety of applications such as medical devices. But getting such materials to conform to desired 3D structures has proven to be a daunting task. In this new effort, the researchers have taken a new approach to tackling the problem—engineering Escherichia coli to produce a product that can be used as the basis for an ink for use in a 3D printer.

The work began by bioengineering the bacteria to produce living nanofibers. The researchers then bundled the fibers and added other ingredients to produce a type of living ink that could be used in a conventional 3D printer. Once they found the concept viable, the team bioengineered other microbes to produce other types of living fibers or materials and added them to the ink. They then used the ink to print 3D objects that had living components. One was a material that secreted azurin—an anticancer drug—when stimulated by certain chemicals. Another was a material that sequestered Bisphenol A (a toxin that has found its way into the environment) without assistance from other chemicals or devices.

Nov 27, 2021

Doing photon upconversion a solid: Crystals that convert light to more useful wavelengths

Posted by in categories: chemistry, solar power, sustainability

Solid-solution organic crystals have been brought into the quest for superior photon upconversion materials, which transform presently wasted long-wavelength light into more useful shorter wavelength light. Scientists from Tokyo Institute of Technology have revisited a materials approach previously deemed lackluster—using a molecule originally developed for organic LEDs—and have achieved outstanding performance and efficiency. Their findings pave the way for many novel photonic technologies, such as better solar cells and photocatalysts for hydrogen and hydrocarbon productions.

Light is a powerful source of energy that can, if leveraged correctly, be used to drive stubborn chemical reactions, generate electricity, and run optoelectronic devices. However, in most applications, not all the wavelengths of can be used. This is because the energy that each photon carries is inversely proportional to its wavelength, and chemical and are triggered by light only when the energy provided by individual photons exceeds a certain threshold.

This means that devices like solar cells cannot benefit from all the color contained in sunlight, as it comprises a mixture of photons with both high and low energies. Scientists worldwide are actively exploring materials to realize upconversion (PUC), by which photons with lower energies (longer wavelengths) are captured and re-emitted as photons with higher energies (shorter wavelengths). One promising way to realize this is through triplet-triplet annihilation (TTA). This process requires the combination of a sensitizer material and an annihilator material. The sensitizer absorbs low energy photons (long-wavelength light) and transfers its excited energy to the annihilator, which emits higher photons (light of shorter wavelength) as a result of TTA.

Nov 27, 2021

Machine learning solves the who’s who problem in NMR spectra of organic crystals

Posted by in categories: chemistry, particle physics, robotics/AI

Solid-state nuclear magnetic resonance (NMR) spectroscopy—a technique that measures the frequencies emitted by the nuclei of some atoms exposed to radio waves in a strong magnetic field—can be used to determine chemical and 3D structures as well as the dynamics of molecules and materials.

A necessary initial step in the analysis is the so-called chemical shift assignment. This involves assigning each peak in the NMR spectrum to a given atom in the molecule or material under investigation. This can be a particularly complicated task. Assigning chemical shifts experimentally can be challenging and generally requires time-consuming multi-dimensional correlation experiments. Assignment by comparison to statistical analysis of experimental chemical shift databases would be an alternative solution, but there is no such for molecular solids.

A team of researchers including EPFL professors Lyndon Emsley, head of the Laboratory of Magnetic Resonance, Michele Ceriotti, head of the Laboratory of Computational Science and Modeling and Ph.D. student Manuel Cordova decided to tackle this problem by developing a method of assigning NMR spectra of organic crystals probabilistically, directly from their 2D chemical structures.

Nov 26, 2021

World’s first autonomous, all-electric container ship

Posted by in categories: chemistry, robotics/AI, transportation

https://youtube.com/watch?v=C2kKgtCfUAY

“We are proud to be able to showcase the world’s first fully electric and self-propelled container ship,” said Svein Holsether, CEO of Norwegian chemical company Yara International. “It will cut 1,000 tonnes of CO2 and replace 40,000 trips by diesel-powered trucks a year.”

Yara has collaborated since 2017 with maritime technology company Kongsberg to develop the ship, which sailed from Horten to Oslo, a distance of approximately 35 nautical miles (65 km). Powered by 7 MWh batteries, it uses an automatic identification system (AIS), cameras (including infrared), a lidar, and radar system. It will begin commercial operations in 2022, transporting mineral fertiliser between ports in southern Norway at up to 15 knots (28 km/h).

Continue reading “World’s first autonomous, all-electric container ship” »

Nov 26, 2021

New Ultrahard Diamond Glass Synthesized Using Carbon Buckyballs

Posted by in categories: chemistry, particle physics

It is the hardest known glass with the highest thermal conductivity among all glass materials.

Carnegie’s Yingwei Fei and Lin Wang were part of an international research team that synthesized a new ultrahard form of carbon glass with a wealth of potential practical applications for devices and electronics. It is the hardest known glass with the highest thermal conductivity among all glass materials. Their findings are published in Nature.

Function follows form when it comes to understanding the properties of a material. How its atoms are chemically bonded to each other, and their resulting structural arrangement, determines a material’s physical qualities—both those that are observable by the naked eye and those that are only revealed by scientific probing.

Nov 26, 2021

Ammolite: Fossilized Ammonites Gem

Posted by in category: chemistry

Ammolite is an opal-like organic gemstone found primarily along the eastern slopes of the Rocky Mountains of North America. It is made of the fossilized shells of ammonites, which in turn are composed primarily of aragonite, the same mineral contained in nacre, with a microstructure inherited from the shell. It is one of few biogenic gemstones; others include amber and pearl.

The chemical composition of ammolite is variable, and aside from aragonite may include calcite, silica, pyrite, or other minerals. The shell itself may contain a number of trace elements, including: aluminium; barium; chromium; copper; iron; magnesium; manganese; strontium; titanium; and vanadium. Its crystallography is orthorhombic. Its hardness is 4.5–5.5, and its specific gravity is 2.60–2.85.

An iridescent opal-like play of color is shown in fine specimens, mostly in shades of green and red; all the spectral colors are possible, however. The iridescence is due to the microstructure of the aragonite: unlike most other gems, whose colors come from light absorption, the iridescent color of ammolite comes from interference with the light that rebounds from stacked layers of thin platelets that make up the aragonite.

Nov 25, 2021

‘Super jelly’ made from 80 per cent water can survive being run over

Posted by in categories: chemistry, robotics/AI, transportation

It could replace cartilage in knees and even help create soft robots 🤯


Is it a bird? Is it a plane? No, it’s ‘super jelly’ — a bizarre new material that can survive being run over by a car even though it’s composed of 80 per cent water.

Continue reading “‘Super jelly’ made from 80 per cent water can survive being run over” »

Nov 24, 2021

We might not know half of what’s in our cells, new AI technique reveals

Posted by in categories: biotech/medical, chemistry, media & arts, robotics/AI

Most human diseases can be traced to malfunctioning parts of a cell—a tumor is able to grow because a gene wasn’t accurately translated into a particular protein or a metabolic disease arises because mitochondria aren’t firing properly, for example. But to understand what parts of a cell can go wrong in a disease, scientists first need to have a complete list of parts.

By combining microscopy, biochemistry techniques and , researchers at University of California San Diego School of Medicine and collaborators have taken what they think may turn out to be a significant leap forward in the understanding of human cells.

The technique, known as Multi-Scale Integrated Cell (MuSIC), is described November 24, 2021 in Nature.

Nov 23, 2021

A UK Rocket Company Wants to Put Nuclear Fusion Power in Orbit by 2027

Posted by in categories: chemistry, military, nuclear energy, space travel

And it could halve the transit time to Mars.

Pulsar Fusion Ltd., a nuclear fusion company based in the United Kingdom, has recently designed and successfully tested its first launch-capable, high-power chemical rocket engine.

Continue reading “A UK Rocket Company Wants to Put Nuclear Fusion Power in Orbit by 2027” »