Menu

Blog

Archive for the ‘chemistry’ category: Page 138

Sep 3, 2022

Chaotic circuit exhibits unprecedented equilibrium properties

Posted by in categories: biological, chemistry, economics, internet, mathematics, robotics/AI

Mathematical derivations have unveiled a chaotic, memristor-based circuit in which different oscillating phases can co-exist along six possible lines.

Unlike ordinary electronic circuits, chaotic circuits can produce oscillating that never repeat over time—but nonetheless, display underlying mathematical patterns. To expand the potential applications of these circuits, previous studies have designed systems in which multiple oscillating phases can co-exist along mathematically-defined “lines of .” In new research published in The European Physical Journal Special Topics, a team led by Janarthanan Ramadoss at the Chennai Institute of Technology, India, designed a chaotic circuit with six distinct lines of equilibrium—more than have ever been demonstrated previously.

Chaotic systems are now widely studied across a broad range of fields: from biology and chemistry, to engineering and economics. If the team’s circuit is realized experimentally, it could provide researchers with unprecedented opportunities to study these systems experimentally. More practically, their design could be used for applications including robotic motion control, secure password generation, and new developments in the Internet of Things—through which networks of everyday objects can gather and share data.

Sep 3, 2022

Aluminum-gallium powder bubbles hydrogen out of dirty water

Posted by in categories: chemistry, energy, nanotechnology

“We don’t need any energy input, and it bubbles hydrogen like crazy. I’ve never seen anything like it,” said UCSC Professor Scott Oliver, describing a new aluminum-gallium nanoparticle powder that generates H2 when placed in water – even seawater.

Aluminum by itself rapidly oxidizes in water, stripping the O out of H2O and releasing hydrogen as a byproduct. This is a short-lived reaction though, because in most cases the metal quickly attains a microscopically thin coating of aluminum oxide that seals it off and puts an end to the fun.

But chemistry researchers at UC Santa Cruz say they’ve found a cost-effective way to keep the ball rolling. Gallium has long been known to remove the aluminum oxide coating and keep the aluminum in contact with water to continue the reaction, but previous research had found that aluminum-heavy combinations had a limited effect.

Sep 2, 2022

‘Diamond rain’ on giant icy planets could be more common than previously thought

Posted by in categories: chemistry, space

A new study has found that “diamond rain,” a long-hypothesized exotic type of precipitation on ice giant planets, could be more common than previously thought.

In an earlier experiment, researchers mimicked the and pressures found deep inside ice giants Neptune and Uranus and, for the first time, observed diamond rain as it formed.

Investigating this process in a that more closely resembles the chemical makeup of Neptune and Uranus, scientists from the Department of Energy’s SLAC National Accelerator Laboratory and their colleagues discovered that the presence of oxygen makes diamond formation more likely, allowing them to form and grow at a wider range of conditions and throughout more planets.

Sep 2, 2022

Revolutionizing Infrared Sensing Could Transform Imaging Applications

Posted by in categories: biotech/medical, chemistry, food, health, military, quantum physics

The infrared (IR) spectrum is a vast information landscape that modern IR detectors tap into for diverse applications such as night vision, biochemical spectroscopy, microelectronics design, and climate science. But modern sensors used in these practical areas lack spectral selectivity and must filter out noise, limiting their performance. Advanced IR sensors can achieve ultrasensitive, single-photon level detection, but these sensors must be cryogenically cooled to 4 K (−269 C) and require large, bulky power sources making them too expensive and impractical for everyday Department of Defense or commercial use.

DARPA’s Optomechanical Thermal Imaging (OpTIm) program aims to develop novel, compact, and room-temperature IR sensors with quantum-level performance – bridging the performance gap between limited capability uncooled thermal detectors and high-performance cryogenically cooled photodetectors.

“If researchers can meet the program’s metrics, we will enable IR detection with orders-of-magnitude improvements in sensitivity, spectral control, and response time over current room-temperature IR devices,” said Mukund Vengalattore, OpTIm program manager in DARPA’s Defense Sciences Office. “Achieving quantum-level sensitivity in room-temperature, compact IR sensors would transform battlefield surveillance, night vision, and terrestrial and space imaging. It would also enable a host of commercial applications including infrared spectroscopy for non-invasive cancer diagnosis, highly accurate and immediate pathogen detection from a person’s breath or in the air, and pre-disease detection of threats to agriculture and foliage health.”

Sep 2, 2022

Astrophysicist Says We May Have Already Observed Wormholes Created by Alien Civilization

Posted by in categories: alien life, chemistry

“Intrinsically unstable, a wormhole would need ‘stuff’ with repulsive gravity to hold open each mouth, and the energy equivalent to that emitted by an appreciable fraction of the stars in a galaxy,” reads Science Focus’ story. The idea would be that “if ETs have created a network of wormholes, it might be detectable by gravitational microlensing.”

That technique has been used in the past to detect thousands of distant exoplanets and stars by detecting how they bend light. Whether it could be used to detect wormholes, to be clear, is an open question.

Fortunately, spotting wormholes isn’t our only shot at detecting life elsewhere in the universe. Science Focus also pointed to the search for theoretical megastructures that harness the energy of a star by fully enclosing it, or atmospheric chemicals linked to human pollution, or extremely thin reflective spacecraft called light sails, any of which could theoretically lead us to discover an extraterrestrial civilization.

Sep 1, 2022

DNA storage promises 10 million times storage capacity boost

Posted by in categories: biotech/medical, chemistry

Circa 2021 face_with_colon_three


A datacentre that fits in the palm of your hand? However, right now, DNA storage is an expensive chemical process that researchers are trying to make a practical proposal.

Sep 1, 2022

Fewer unknowns in the laser nanosynthesis of composites

Posted by in categories: chemistry, nanotechnology, particle physics

Composite particles with submicron sizes can be produced by irradiating a suspension of nanoparticles with a laser beam. Violent physical and chemical processes take place during irradiation, many of which have been poorly understood to date. Recently completed experiments, carried out at the Institute of Nuclear Physics of the Polish Academy of Sciences in Cracow, have shed new light on some of these puzzles.

When a strikes agglomerates of nanoparticles suspended in a colloid, events occur that are as dramatic as they are useful. The tremendous increase in temperature leads to the melting together of nanoparticles into a composite particle. A thin layer of liquid next to the heated material rapidly transforms into vapor, and whole sequences of chemical reactions take place under that change in fractions of a second. Using this method, called laser melting, scientists from the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ PAN) in Cracow not only produced new nanocomposites, but also described some of the poorly understood processes responsible for their formation.

“The laser melting process itself, consisting of irradiating particles of material in suspension with unfocused laser light, has been known for years. It is mainly used for the production of single component materials. We, as one of only two research teams in the world, are trying to use this technique to produce composite submicron particles. In this area, the field is still in its infancy, there are still many unknowns, hence our joy that some puzzles that perplexed us have just been unraveled,” says Dr. Żaneta Świątkowska-Warkocka, a professor at IFJ PAN, the co-author of a scientific article just published in the journal Scientific Reports.

Sep 1, 2022

A microbial supply chain for production of the anti-cancer drug vinblastine

Posted by in categories: biotech/medical, chemistry

De novo microbial biosynthesis of vindoline and catharanthine using a highly engineered yeast and in vitro chemical coupling to vinblastine is carried out, positioning yeast as a scalable platform to produce many monoterpene indole alkaloids.

Sep 1, 2022

New process converts old PLA plastic into a better 3D-printing resin

Posted by in categories: 3D printing, chemistry, sustainability

Although plant-based polylactic acid (PLA) bioplastic is acclaimed for its biodegradability, it can take quite a long time to degrade if the conditions aren’t quite right. Bearing this fact in mind, Washington State University scientists have devised a way of upcycling it into a 3D-printing resin.

“[PLA] is biodegradable and compostable, but once you look into it, it turns out that it can take up to 100 years for it to decompose in a landfill,” said postdoctoral researcher Yu-Chung Chang, co-corresponding author of the study. “In reality, it still creates a lot of pollution. We want to make sure that when we do start producing PLA on the million-tons scale, we will know how to deal with it.”

To that end, Chang and colleagues developed a process in which an inexpensive chemical known as aminoethanol is used to break down the long chains of molecules that make up PLA. Those chains are rendered into simple monomers, which are the basic building blocks of plastic. The process takes about two days, and can be carried out at mild temperatures.

Aug 31, 2022

Scientists Grow Lead-Free Solar Material With a Built-In Switch

Posted by in categories: chemistry, nanotechnology, solar power, sustainability

Solar cell manufacturing just became easier, more efficient, and less costly. A team of researchers at DOE’s Lawrence Berkeley National Laboratory (Berkeley Lab), in collaboration with UC Berkeley, has discovered a unique material that can be used as a simpler approach to solar cell manufacturing, the team reported.

This material is a crystalline solar material with a built-in electric field — also known as “ferroelectricity” — that was reported earlier this year in the journal Science Advances.


Light microscopy image of nanowires, 100 to 1,000 nanometers in diameter, grown from cesium germanium tribromide (CGB) on a mica substrate. The CGB nanowires are samples of a new lead-free halide perovskite solar material that is also ferroelectric. (Credit: Peidong Yang and Ye Zhang/Berkeley Lab)

Continue reading “Scientists Grow Lead-Free Solar Material With a Built-In Switch” »