Toggle light / dark theme

Researchers investigate the swarming behavior of microrobots

Miniaturization is progressing rapidly in many fields, and the trend toward the creation of ever smaller units is also prevalent in the world of robot technology. In the future, minuscule robots used in medical and pharmaceutical applications might be able to transport medication to targeted sites in the body. Statistical physics can contribute to the foundations for the development of such technologies.

A team of researchers at Johannes Gutenberg University Mainz (JGU) has now taken a new approach to the issue by analyzing a group of robots and how they behave as collectives of motile units based on the model of active Brownian particles. The team’s findings demonstrating that there may be an alternative route to realize programmable active matter have been published in Science Advances.

Researchers are looking for new ways to perform tasks on the micro-and nanoscale that are otherwise difficult to realize, particularly as the miniaturization of devices and components is beginning to reach physical limits. One new option being considered is the use of collectives of robotic units in place of a single robot to complete a task.

Blood Test #3 in 2023: Supplements, Diet

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links:
At-Home Metabolomics: https://www.iollo.com/?ref=michael-lustgarten.

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/
Use Code: ConquerAging At Checkout.

Green Tea: https://www.ochaandco.com/?ref=conqueraging.

Oral Microbiome: https://www.bristlehealth.com/?ref=michaellustgarten.
Enter Code: ConquerAging.

Epigenetic Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1

A potential cure for diabetes found in human stomach cells

The ability to acquire gut stem cells via biopsy and have a significant proliferative capacity in culture make them an invaluable resource for autologous cell treatments. In the mouse gut, insulin-producing cells can be produced. Still, human gut tissues have not been able to produce an abundance or durability of insulin-secreting cells to assess their potential as a cell treatment for diabetes.

In a new study, scientists from Weill Cornell Medicine showed that stem cells from human stomach can be converted into insulin-secreting cells. Scientists demonstrated that they could obtain the stem cells from the human stomach and reprogram them directly—with strikingly high efficiency—into cells that closely resemble pancreatic insulin-secreting cells known as beta cells.

In experiments on a mouse model, this approach reversed disease signs. According to scientists, the study offers a promising approach, based on patient’s cells, for type 1 diabetes and severe type 2 diabetes.

Psychedelic substance 5-MeO-DMT induces long-lasting neural plasticity in mice

The psychedelic substances 5-MeO-DMT causes a long-lasting increase in the number of tiny protrusions called dendritic spines in the brain, according to new research published in Neuropsychopharmacology. The study, which was conducted on mice, sheds light on the behavioral and neural mechanisms of 5-MeO-DMT.

Serotonergic psychedelics (such as psilocybin and LSD) have shown promise as potential therapeutics for mental illnesses like depression and anxiety. Short-acting compounds are particularly interesting because they require less dosing time, which could improve patient access to treatment. In humans, 5-MeO-DMT produces a short-lasting experience due to its rapid breakdown in the body.

“My lab started research on psychiatric drugs like ketamine and psychedelics about 10 years ago. We were motivated by how basic science and clinical research can together powerfully move a drug forward to become medicine. Specifically I believe there is a lot of potential for psychedelics as therapeutics, and that drives our interest in this topic,” said study author Alex Kwan (@kwanalexc), an associate professor in the Meinig School of Biomedical Engineering at Cornell University.

Gene Editing Gets a Triple Boost: “Happy Accident” Leads to Enhanced CRISPR Efficiency

Scientists have enhanced the efficiency of CRISPR/Cas9 gene editing by threefold using interstrand crosslinks, without resorting to viral material for delivery. This approach boosts the cell’s natural repair mechanisms, allowing for more accurate and efficient gene editing, potentially improving disease research and preclinical work.

Gene editing is a powerful method for both research and therapy. Since the advent of the Nobel Prize-winning CRISPR/Cas9 technology, a quick and accurate tool for genome editing discovered in 2012, scientists have been working to explore its capabilities and boost its performance.

Researchers in the University of California, Santa Barbara biologist Chris Richardson’s lab have added to that growing toolbox, with a method that increases the efficiency of CRISPR/Cas9 editing without the use of viral material to deliver the genetic template used to edit the target genetic sequence. According to their new paper published in the journal Nature Biotechnology, their method stimulates homology-directed repair (a step in the gene editing process) by approximately threefold “without increasing mutation frequencies or altering end-joining repair outcomes.”

The science of super longevity | Dr. Morgan Levine

I quoted and responded to this remark:

“…we probably will not solve death and this actually shouldn’t be our goal.” Well nice as she seems thank goods Dr Levine does not run the scientific community involved in rejuvenation.

The first bridge looks like it’s going to be plasma dilution and this may come to the general population in just a few short years. People who have taken this treatment report things like their arthritis and back pain vanishing.

After that epigentic programming to treat things that kill you in old age. And so on, bridge after bridge. if you have issues with the future, some problem with people living as long as they like, then by all means you have to freedom to grow old and die. That sounds mean but then I think it’s it’s mean to inform me I have to die because you think we have to because of “progress”. But this idea that living for centuries or longer is some horrible moral crime just holds no water.


Science can’t stop aging, but it may be able to slow our epigenetic clocks.

Artificial muscle fibers could serve as cell scaffolds

In two new studies, North Carolina State University researchers have designed and tested a series of textile fibers that can change shape and generate force like a muscle. In the first study, published in Actuators, the researchers focused on the materials’ influence on artificial muscles’ strength and contraction length. The findings could help researchers tailor the fibers for different applications.

In the second, proof-of-concept study published in Biomimetics, the researchers tested their fibers as scaffolds for . Their findings suggest the fibers—known as “fiber robots”—could potentially be used to develop 3D models of living, moving systems in the human body.

“We found that our fiber robot is a very suitable scaffold for the cells, and we can alter the frequency and contraction ratio to create a more suitable environment for cells,” said Muh Amdadul Hoque, graduate student in textile engineering, chemistry and science at NC State. “These were proof-of concept studies; ultimately, our goal is to see if we can study these fibers as a scaffold for stem cells, or use them to develop artificial organs in future studies.”

Protein-based nano-computer evolves in its ability to influence cell behavior

The first protein-based nano-computing agent that functions as a circuit has been created by Penn State researchers. The milestone puts them one step closer to developing next-generation cell-based therapies to treat diseases like diabetes and cancer.

Traditional synthetic biology approaches for cell-based therapies, such as ones that destroy or encourage tissue regeneration after injury, rely on the expression or suppression of proteins that produce a desired action within a cell. This approach can take time (for proteins to be expressed and degrade) and cost cellular energy in the process. A team of Penn State College of Medicine and Huck Institutes of the Life Sciences researchers are taking a different approach.

“We’re engineering proteins that directly produce a desired action,” said Nikolay Dokholyan, G. Thomas Passananti Professor and vice chair for research in the Department of Pharmacology. “Our protein-based devices or nano-computing agents respond directly to stimuli (inputs) and then produce a desired action (outputs).”

Gene therapy rescues hearing for the first time in aged mouse models

While hearing aids and offer limited relief, no available treatment can reverse or prevent this group of genetic conditions, prompting scientists to evaluate gene therapies for alternative solutions.

One of the most promising tools used in these therapies—adeno associated virus (AAV) vectors—has galvanized the hearing-loss community in recent years.

Study reveals type 2 diabetes diagnosis spurs cholesterol shifts, alters Ccardiovascular risk

A recent study published in the journal Scientific Reports assessed the associations between the change in total cholesterol (TC) levels after type 2 diabetes (T2D) diagnosis (relative to pre-diagnosis levels) and the risk of cardiovascular disease (CVD).

CVD is the global leading cause of mortality. T2D is a gateway disease to CVD. A study revealed higher coronary heart disease (CHD) and stroke risks in diabetes patients than in non-diabetic individuals. The global prevalence of T2D is expected to exceed 10% by 2030. Therefore, preventing CVD in people with diabetes could be of public health significance.

Hypercholesterolemia is a significant risk factor for CVD, and its adverse effects on CVD could be more evident in individuals with metabolic conditions, e.g., T2D. Diabetes patients may be more susceptible to hypercholesterolemia’s negative impact on CVD risk. Nonetheless, T2D diagnosis often results in positive lifestyle changes helping reduce hypercholesterolemia or CVD risk.