Toggle light / dark theme

Sickle cell patient’s success with gene editing raises hopes and questions

Throughout Gray’s life before she got the treatment, the deformed, sickle-shaped red blood cells caused by the genetic disorder would regularly incapacitate her with intense, unpredictable attacks of pain. Those crises would send Gray rushing to the hospital for pain medication and blood transfusions. She could barely get out of bed many days; when she became a mom, she struggled to care for her four children and couldn’t finish school or keep a job.

But then she received the treatment on July 2, 2019. Doctors removed some of her bone marrow cells, genetically modified them with CRISPR and infused billions of the modified cells back into her body. The genetic modification was designed to make the cells produce fetal hemoglobin, in the hopes the cells would compensate for the defective hemoglobin that causes the disease.


A Mississippi woman’s life has been transformed by a treatment for sickle cell disease with the gene-editing technique CRISPR. All her symptoms from a disease once thought incurable have disappeared.

It’s officially flu season! Go get your vaccine now

It’s the beginning of the flu season and hospitals in the city have reported an increase in the number of people coming in with fever, severe body pain, and fatigue. Infectious diseases expert Dr V Ramasubramanian in an interview to Pushpa Narayan explains why people should take the flu shot.

Will the flu vaccine prevent the flu?

The flu vaccine prevents the infection in up to 70% of cases, and reduces the chances of severe disease. The infection can stimulate inflammation of different parts of the body including blood vessels. This leads to a series of complications in the body including heart attacks and strokes.

Scientists Electrify Biology by Converting Current Into the Chemical Fuel of Cells

Interfacing modern electronics-based technology with biology is notoriously difficult. One major stumbling block is that the way they are powered is very different. While most of our gadgets run on electrons, nature relies on the energy released when the chemical bonds of ATP are broken. Finding ways to convert between these two very different currencies of energy could be useful for a host of biotechnologies.

Genetically engineered microbes are already being used to produce various high-value chemicals and therapeutically useful proteins, and there are hopes they could soon help generate greener jet fuel, break down plastic waste, and even grow new foods in giant bioreactors. But at the minute, these processes are powered through an inefficient process of growing biomass, converting it to sugar, and feeding it to the microbes.

Now, researchers at the Max Planck Institute for Terrestrial Microbiology in Germany have devised a much more direct way to power biological processes. They have created an artificial metabolic pathway that can directly convert electricity into ATP using a cocktail of enzymes. And crucially, the process works in vitro and doesn’t rely on the native machinery of cells.

AI can make implants last longer inside the human body

AI helps implants work better, preventing diseases before they happen despite immune system challenges.

Imagine your body had an implant that could continuously monitor the occurrence of diseases and infections and immediately release medications to prevent them. Wouldn’t that be ideal, especially for patients who suffer from conditions like heart failure, diabetes, and asthma?

You’d be surprised to know that such implants do exist, but the human body doesn’t allow them to work. Our immune system recognizes such devices as foreign substances.

The collective intelligence of cells during morphogenesis as a model for cognition beyond the brain

Michael Levin talk for the Mind, Technology, and Society (MTS) talk series at UC Merced on January 23, 2023. Abstract: Each of us makes the remarkable journey from the physics and chemistry of a quiescentunfertilized egg to that of a complex human being. How can we understand the continuousprocesses that scale up minds from the tiny physiological competencies of single cells to the large-scale metacognitive capacities of large brains? Here, I will describe a framework known as TAME-Technological Approach to Mind Everywhere — which enables identifying, understanding, andrelating to unconventional cognitive agents. I will use the example of the collective intelligence ofcells during morphogenesis to illustrate how we can begin to widen the lessons of multiscale neuroscience well beyond neurons. This will be essential as we head into a future that will bepopulated by a wide range of evolved, designed, and hybrid beings with novel bodies and novelminds. I will conclude with a case study of our new synthetic biorobot (Xenobots) and a discussionof the implications of these ideas for evolution, biomedicine, and ethics.

Michael Levin: Cognition and diverse intelligence in non-neural cellular collectives

Consciousness is usually ascribed to a specific set of mechanisms and functional capabilities of the complex brain. Importantly, those mechanisms (ion channels, electrical networks, neurotransmitter machinery) long pre-date the evolutionary innovation of nervous systems. Moreover, the algorithms and competencies such as memory, decision-making, and information integration likewise have an ancient evolutionary origin: before they controlled moving the body through 3D space, electrical networks moved body configurations through anatomical morphospace. In this talk, I will describe how we view the morphogenesis during embryonic development and regeneration as the behavior of a collective intelligence, which has many problem-solving capacities. I will describe the tools we have developed, paralleling neuroscientists’ attempts to read and write mental content by control of electrophysiology, to decode and re-write the pattern memories of the body. This has significant implications not only for biomedicine and evolutionary biology, but also for questions about consciousness and the scaling of coherent Selves from agential materials. I will conclude with some conjectures about what this new field offers the science of consciousness, in the form of new embodied living creatures that are outside the natural evolutionary stream of Earth, and the quest for theories of consciousness.-https://www.drmichaellevin.org/ Participate in our online research survey-Survey on Diverse intelligence-https://tufts.qualtrics.com/jfe/form/SV_eE51vKE34q3hexo (takes 9 minutes). Thank you.

Edited by Emilio Manzotti.
https://github.com/emilim/

Virtual Reality for Supporting the Treatment of Depression and Anxiety: Scoping Review

Conclusions: Most studies demonstrated the use of VR to be effective for supporting the treatment of anxiety or depression in a range of settings and recommended its potential as a tool for use in a clinical environment. Even though standalone headsets are much easier to work with and more suitable for home use, the shift from tethered VR headsets to standalone headsets in the mental health environment was not observed. All studies that looked at the use of CBT either in vivo or in a virtual environment found it to be effective in supporting the treatment of anxiety or depression.

Keywords: CBT; anxiety; depression; mental health; virtual reality.

©Nilufar Baghaei, Vibhav Chitale, Andrej Hlasnik, Lehan Stemmet, Hai-Ning Liang, Richard Porter. Originally published in JMIR Mental Health (https://mental.jmir.org), 23.09.2021.

GENETIC ENGINEERING & BIOTECHNOLOGY in the Future (2077 & Beyond)

What happens when humans begin combining biology with technology, harnessing the power to recode life itself.

What does the future of biotechnology look like? How will humans program biology to create organ farm technology and bio-robots. And what happens when companies begin investing in advanced bio-printing, artificial wombs, and cybernetic prosthetic limbs.

Other topic include: bioengineered food and farming, bio-printing in space, new age living bioarchitecture (eco concrete inspired by coral reefs), bioengineered bioluminescence, cyberpunks and biopunks who experiment underground — creating new age food and pets, the future of bionics, corporations owning bionic limbs, the multi-trillion dollar industry of bio-robots, and bioengineered humans with super powers (Neo-Humans).

As well as the future of biomedical engineering, biochemistry, and biodiversity.
_______

Created by: Jacob.
Narration by: Alexander Masters (www.alexander-masters.com)

Modern Science Fiction.

The biological switch that could turn neuroplasticity on and off in the brain

The Conversation Weekly podcast is taking a short break in August. In the meantime, we’re bringing you extended versions of some of our favourite interviews from the past few months.

This week, how researchers discovered a biological switch that could turn on and off neuroplasticity in the brain – the ability of neurons to change their structure. We speak to Sarah Ackerman, a postdoctoral fellow at the Institute of Neuroscience and Howard Hughes Medical Institute at the University of Oregon, about what she and her team have found and why it matters.

This episode of The Conversation Weekly features an extended version of an interview first published on April 29. The Conversation Weekly is produced by Mend Mariwany and Gemma Ware, with sound design by Eloise Stevens. Our theme music is by Neeta Sarl. You can sign up to The Conversation’s free daily email here. Full credits for this episode available here.

Further reading: Astrocyte cells in the fruit fly brain are an on-off switch that controls when neurons can change and grow, by Sarah DeGenova Ackerman, University of OregonSwimming gives your brain a boost – but scientists don’t know yet why it’s better than other aerobic activities, by Seena Mathew, University of Mary Hardin-BaylorWhat is brain plasticity and why is it so important?, by Duncan Banks, The Open University.

/* */