Toggle light / dark theme

In 2021, one of the record years in biotechnology investments, about 50 drugs were approved by the FDA. 36 of these were small molecules. In my opinion, only about 5 of these were truly innovative targeting novel mechanisms and novel targets. The 10th revision of the International Classification of Diseases (ICD) contained 55,000 codes for diseases, injuries and conditions. Even if we assume that there are only 10,000 diseases, 50 FDA approvals per year seems to be an extraordinarily small number.

The reason for this small number of innovative and effective therapeutics is the long time, high cost, and low probability of success of drug discovery and development. On average, this process takes 12 years, costs over $2 Billion dollars and fails over 90% of the time. The most innovative therapeutics with novel targets have even higher probability of failure. To get these 50 drugs approved in 2021, the pharmaceutical companies globally spent over $100 Billion and over a decade.

The biotechnology industry is very different from any other industry and it is important to understand how it works, and the role China plays in delivering safe and effective medicines to suffering patients worldwide. Sharing risk, expenses, and infrastructure will result in acceleration of global biotechnology and increase the number of innovative drug approvals. Closer collaboration between the US and China in biotechnology would allow investors to share huge risks and returns while benefiting everyone on the planet and making this world a much better place.

Despite surges in fields like AI, medicine and nuclear energy, major advances in science and technology are slowing and are fewer and farther between than decades ago, according to a study published in Nature.

The researchers analyzed some 45 million scientific papers and 3.9 million patents between 1945 and 2010, examining networks of citations to assess whether breakthroughs reinforced the status quo or disrupted existing knowledge and more dramatically pushed science and technology off into new directions.

Across all major scientific and technological fields, these big disruptions—the discovery of the double helix structure of DNA, which rendered earlier research obsolete, is a good example of such research—have become less common since 1945, the researchers found.

Ray Kurzweil, an American Jewish inventor and futurist, claims that within ten years, man will be able to defeat old age and death thanks to the accelerated development of technology.

My question in relation to Kurzweil’s statement is: What is so good about us constantly living all the time? Why live at all if we are never to die?

On the contrary, if we attain the purpose of our lives while we are alive, then we will reach a spiritual, eternal, and perfect state, i.e. one where we will have no feeling of a lack. In our current lives, we constantly live out of feeling lack and the need to fulfill our lacks. However, we can reach a state where we have no such feeling of a lack, but that we have an abundance of everything.

Developing ourselves spiritually has nothing to do with medicine or technology. It has to do with our inner world, i.e. with how we feel that we can give and receive from everyone, and live in a world that is boundless, with no beginning or end. Then, even if our bodies die, we will not feel it as death.

In this episode, David and Peter discuss aging as a disease, the technology needed to reverse aging, and tips and tricks to increase your lifespan.

David Sinclair is a biologist and academic known for his expertise in aging and epigenetics. Sinclair is a genetics professor and the Co-Director of Harvard Medical School’s Paul F. Glenn Center for Biology of Aging Research. He’s been included in Time100 as one of the 100 Most Influential People in the World, and his research has been featured all over the media. Besides writing a New York Times Best Seller, David has co-founded several biotech companies, a science publication called Aging, and is an inventor of 35 patents.
Read David’s book, Lifespan: Why We Age-and Why We Don’t Have To: https://a.co/d/85H3Mll.

This episode is brought to you by Levels: real-time feedback on how diet impacts your health. https://levels.link/peter.

Consider a journey to optimize your mind and body by visiting http://mylifeforce.com/peter.

Check out all the on-demand sessions from the Intelligent Security Summit here.

Over the last half-decade, quantum computing has attracted tremendous media attention. Why?

After all, we have computers already, which have been around since the 1940s. Is the interest because of the use cases? Better AI? Faster and more accurate pricing for financial services firms and hedge funds? Better medicines once quantum computers get a thousand times bigger?

New research published in the Annals of Clinical and Translational Neurology on December 7 has identified three genes and their expressed proteins that may be involved in the pathogenesis of multiple sclerosis.

By comparing information on the genes and proteins expressed in the brains of thousands of individuals with and without multiple sclerosis, investigators discovered different expression levels of the SHMT1, FAM120B, and ICA1L genes (and their proteins) in brain tissues of patients versus controls.

Studying the functions of these genes may uncover new information on the mechanisms involved in the development and progression of multiple sclerosis. “Our findings shed new light on the pathogenesis of MS and prioritized promising targets for future therapy research,” the authors wrote.