Toggle light / dark theme

A Gene Behind a Key Senescence Biomarker

A paper published in GeroScience has described a gene responsible for a key biomarker of cellular senescence.

However, SA-ß-gal’s actual relationship to senescence processes has not been fully explored. In order to explore its potential as a biomarker, these researchers developed an RNA-binding protein that restricts SA-ß-gal expression both in C.elegans worms and in human cell cultures, and their experiments provided some insights into how this compound works.

The Cure to AI Fatigue: Striking a Balance Between Humans and Artificial Intelligence

Artificial Intelligence has transformed how we live, work, and interact with technology. From voice assistants and chatbots to recommendation algorithms and self-driving cars, AI has suddenly become an integral part of our daily lives, just a few months after the release of ChatGPT, which kickstarted this revolution.

However, with the increasing prevalence of AI, a new phenomenon called “AI fatigue” has emerged. This fatigue stems from the overwhelming presence of AI in various aspects of our lives, raising concerns about privacy, autonomy, and even the displacement of human workers.

AI fatigue refers to the weariness, frustration, or anxiety experienced by individuals due to the overreliance on AI technologies. While AI offers numerous benefits, such as increased efficiency, improved decision-making, and enhanced user experiences, it also presents certain drawbacks. Excessive dependence on AI can lead to a loss of human agency, diminishing trust in technology, and a feeling of disconnection from the decision-making process.

What is The Field of Diverse Intelligence? Hacking the Spectrum of Mind & Matter | Michael Levin

Michael Levin is a Distinguished Professor in the Biology department at Tufts University. He holds the Vannevar Bush endowed Chair and serves as director of the Allen Discovery Center at Tufts and the Tufts Center for Regenerative and Developmental Biology. To explore the algorithms by which the biological world implemented complex adaptive behavior, he got dual B.S. degrees, in CS and in Biology and then received a PhD from Harvard University. He did post-doctoral training at Harvard Medical School, where he began to uncover a new bioelectric language by which cells coordinate their activity during embryogenesis. The Levin Lab works at the intersection of developmental biology, artificial life, bioengineering, synthetic morphology, and cognitive science.

✅EPISODE LINKS:
👉Round 1: https://youtu.be/v6gp-ORTBlU
👉Mike’s Website: https://drmichaellevin.org/
👉New Website: https://thoughtforms.life.
👉Mike’s Twitter: https://twitter.com/drmichaellevin.
👉Mike’s YouTube: https://youtube.com/@drmichaellevin.
👉Mike’s Publications: https://tinyurl.com/yc388vvk.
👉The Well: https://www.youtube.com/watch?v=0a3xg4M9Oa8 & https://youtu.be/XHMyKOpiYjk.
👉Aeon Essays: https://aeon.co/users/michael-levin.

✅TIMESTAMPS:
0:00 – Introduction.
1:27 – The Prisoner’s Dilemma (Game Theory applied to Life)
7:55 – Computational Boundary of the Self.
10:17 – “Goal States” & “Cognitive Light Cones”
13:55 – To Naturalise Cognition.
19:00 – The Hard Problem of Consciousness.
23:10 – Defining Consciousness.
27:14 – The Field of Diverse Intelligence.
43:25 – Who inspired Mike within his field.
46:52 – Is Mike a Panpsychist?
52:09 – Thoughts on Illusionism.
55:44 – Links to IIT
57:56 – Technological Approach to Mind Everywhere (TAME 2.0)
1:02:14 – Proof of Humanity Certification.
1:10:00 – Phase Transitions in Mathematics.
1:15:26 – Bioelectric Medicine.
1:21:06 – Can Cells Think? What is the Self? Is Man a Machine?
1:28:55 – Metacognition & Cloning.
1:35:49 – Teleology, Teleonomy & Teleophobia.
1:50:08 – All Intelligence is Collective Intelligence.
1:54:33 — Conclusion.

Video Title: What is The Field of Diverse Intelligence? Hacking the Spectrum of Mind & Matter | Michael Levin.

🔔Ready to change the way you think about the mind-body dichotomy? Join Dr. Tevin Naidu on a quest to conquer the mind-body problem. Subscribe and take one step closer to the Mind-Body Solution: https://t.ly/ASNw6

⭐ ⭐ ⭐ ⭐ ⭐ Audio Podcast is currently on your favorite platforms:

Michael Levin: “Non-neural, developmental bioelectricity as a precursor for cognition”

Plenary Talk by Michael Levin on “Non-neural, developmental bioelectricity as a precursor for cognition: Evolution, synthetic organisms, and biomedicine” at the Virtual Miniature Brain Machinery Retreat, September 16, 2021. Introduction by William Baker.

Michael Levin.
Director of the Allen Discovery Center.
Tufts University.

Sponsored by the National Science Foundation, the University of Illinois at Urbana-Champaign, and the Beckman Institute for Advanced Science & Technology. This video was supported by the National Science Foundation under grant 1735252.

-Electricity of Life💡: Wonders of Bioelectricity and Regenerative Biology Prof Michael Levin

Welcome to another exciting episode of our podcast series, where we dive deep into the world of science and innovation! In today’s episode, we have the privilege of interviewing Prof. Michael Levin, a renowned researcher in the fields of bioelectricity, regenerative biology, and biophysics.

Prof. Levin is the director of the Allen Discovery Center at Tufts University and has been making groundbreaking discoveries that are revolutionizing the field of regenerative medicine. His research focuses on understanding the electrical communication within and between cells, and how this communication can be harnessed for tissue repair and regeneration.

In this thought-provoking conversation, we cover:

🔹 The fundamentals of bioelectricity and its role in cellular communication.
🔹 How bioelectric signals can be manipulated to control cell behavior.
🔹 Prof. Levin’s pioneering work in regenerative medicine and tissue engineering.
🔹 The potential applications of bioelectricity in treating various diseases and conditions.
🔹 Ethical considerations and the future of bioelectricity in healthcare.

Join us for this insightful discussion and learn how Prof. Levin’s research is paving the way for innovative solutions in regenerative medicine. Don’t forget to subscribe to our channel for more fascinating interviews with leading experts in science and technology!

Restoring A Person’s Voice Using A Brain-Computer Interface

Being able to vocalize is one of the most essential elements of the human experience, with infants expected to start babbling their first words before they’re one year old, and much of their further life revolving around interacting with others using vocalizations involving varying degrees of vocabulary and fluency. This makes the impairment or loss of this ability difficult to devastating, as is the case with locked-in syndrome (LIS), amyotrophic lateral sclerosis (ALS) and similar conditions, where talking and vocalizing has or will become impossible.

In a number of concurrent studies, the use of a brain-computer interface (BCI) is investigated to help patients suffering from LIS (Sean L. Metzger et al., 2023) and ALS (Francis R. Willett et al., 2023) to regain their speaking voice. Using the surgically implanted microelectrode arrays (Utah arrays) electrical impulses pertaining to the patient’s muscles involved in speaking are recorded and mapped to phonemes, which are the elements that make up speech. Each of these phonemes requires a specific configuration of the muscles of the vocal tract (e.g. lips, tongue, jaw and larynx), which can be measured with a fair degree of accuracy.

In the case of the study by Sean L. Metzger et al. as recently published in Nature, the accompanying research article on the University of California San Francisco website details the story of their patient: Ann. At the age of 30, Ann suffered a brainstem stroke which rendered her essentially fully paralyzed. As an LIS patient she lacked for a long time even the ability to move her facial muscles.

Innovative insights into effects of hematopoietic changes on colon cancer, unveiling therapeutic avenues

In a recent study published in the Journal of Experimental Medicine, researchers investigated whether bone marrow-derived cells with heterozygous loss of Dnmt3a (Dnmt3a+/Δ), the most common genetic alteration in clonal hematopoiesis (CH), contribute to colitis-associated colon cancer (CAC) pathogenesis.

Study: Hematopoietic-specific heterozygous loss of Dnmt3a exacerbates colitis-associated colon cancer. Image Credit: vetpathologist/Shutterstock.com.

Promising New Cancer Drug May Kill Cancer Cells with Minimal Side Effects

An exciting new cancer drug has recently entered into a phase 1 clinical trial supported by promising pre-clinical work. The drug, named AOH1996, targets a protein called proliferating cell nuclear antigen (PCNA), an essential player in the biological processes of DNA replication and repair. A team of researchers from City of Hope published the data describing how they identified and characterized AOH1996 in Cell Chemical Biology last week. Since then, the news of AOH1996 has appeared prominently in both scientific and mainstream media.

Using a rational drug design approach that develops drugs based on their specific biological targets, the researchers identified AOH1996. Lead researcher Linda Malkas named the drug after Anna Oliva Healey, a girl born in 1996 who succumbed to neuroblastoma at age 9.

In the laboratory, the researchers tested AOH1996 on over 70 different kinds of tumor cells as well as some healthy control cells. While the drug killed the cancer cells, it notably does not affect non-cancer cells, including blood cells and the cells lining the airway. This indicates AOH1996 as a selective drug that will suppress tumor growth but likely not cause adverse effects that can occur when a cancer drug damages healthy cells.