Toggle light / dark theme

Research into the nature of memory reveals how cells that store information are stabilized over time

When neurons are activated in the hippocampus, not all are going to be firing at once.


Think of a time when you had two different but similar experiences in a short period. Maybe you attended two holiday parties in the same week or gave two presentations at work. Shortly afterward, you may find yourself confusing the two, but as time goes on that confusion recedes and you are better able to differentiate between these different experiences.

New research published in Nature Neuroscience reveals that this process occurs on a , findings that are critical to the understanding and treatment of memory disorders, such as Alzheimer’s disease.

Dynamic engrams store memories

The research focuses on engrams, which are in the brain that store memory information. “Engrams are the neurons that are reactivated to support ,” says Dheeraj S. Roy, Ph.D., one of the paper’s senior authors and an assistant professor in the Department of Physiology and Biophysics in the Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo. “When engrams are disrupted, you get amnesia.”

Lifespan Increases in Mice when Specific Brain Cells are Activated, study finds

In recent years, research has begun to reveal that the lines of communication between the body’s organs are key regulators of aging. When these lines are open, the body’s organs and systems work well together. But with age, communication lines deteriorate, and organs don’t get the molecular and electrical messages they need to function properly.

A new study from Washington University School of Medicine in St. Louis identifies, in mice, a critical communication pathway connecting the brain and the body’s fat tissue in a feedback loop that appears central to energy production throughout the body. The research suggests that the gradual deterioration of this feedback loop contributes to the increasing health problems that are typical of natural aging.

The study—published in the journal Cell Metabolism—has implications for developing future interventions that could maintain the feedback loop longer and slow the effects of advancing age.

Quantum Computing Could Make Cancer More Like The Common Cold

“In recent years, the clinical development of liquid biopsies for cancer, a revolutionary screening tool, has created great optimism,” write Liz Kwo and Jenna Aronson in the American Journal of Managed Care.

At present, liquid biopsies can detect more than 50 different types of cancer. A standard visit to the doctor may eventually be able to detect cancers years before they become lethal.

In the future, even the toilet in your bathroom may be sensitive enough to detect the signs of cancer cells, enzymes and genes circulating in your bodily fluids, so that cancer becomes no more lethal than the common cold. Every time you go to the bathroom, you might be tested for cancer. The “smart toilet” might become our first line of defense.

Mini-robots modeled on insects may be smallest, lightest, fastest ever developed

Two insect-like robots, a mini-bug and a water strider, developed at Washington State University, are the smallest, lightest and fastest fully functional micro-robots ever known to be created.

Such miniature robots could someday be used for work in areas such as artificial pollination, search and rescue, , micro-fabrication or robotic-assisted surgery. Reporting on their work in the proceedings of the IEEE Robotics and Automation Society’s International Conference on Intelligent Robots and Systems, the mini-bug weighs in at eight milligrams while the weighs 55 milligrams. Both can move at about six millimeters a second.

“That is fast compared to other micro-robots at this scale, although it still lags behind their biological relatives,” said Conor Trygstad, a Ph.D. student in the School of Mechanical and Materials Engineering and lead author on the work. An ant typically weighs up to five milligrams and can move at almost a meter per second.

“Hard to Imagine a World Without It” — Jeff Desjardin on the Potential of CRISPR Technology

Jeff Desjardins, Editor-in-Chief of Visual Capitalist, joins OPTO Sessions to discuss the profound and far-reaching potential of CRISPR and gene editing technology, which he believes could impact fields as diverse as oncology, agriculture and materials science.

On 8 December, the US Food and Drug Administration (FDA) approved two cell-based gene therapies for the treatment of sickle cell disease. The decision marked a watershed moment in the history of healthcare, being the first time that gene therapies have won FDA approval.

One of the treatments, Casgevy, is the result of a collaboration between CRISPR Therapeutics [CRSP] and Vertex Pharmaceuticals [VRTX]. The other, Lyfgenia, was developed by bluebird bio [BLUE].

For This Emergent Class of Materials, “Solutions Are the Problem”

Rice University materials scientists developed a fast, low-cost, scalable method to make covalent organic frameworks (COFs). Credit: Photo by Gustavo Raskosky/Rice University.

Materials scientists at Rice University have created an efficient, affordable, and scalable technique for producing covalent organic frameworks (COFs). These crystalline polymers are notable for their adjustable molecular structure, extensive surface area, and porosity, making them potentially valuable in areas like energy applications, semiconductor devices, sensors, filtration systems, and drug delivery.

“What makes these structures so special is that they are polymers but they arrange themselves in an ordered, repeating structure that makes it a crystal,” said Jeremy Daum, a Rice doctoral student and lead author of a study published in ACS Nano. “These structures look a bit like chicken wire ⎯ they’re hexagonal lattices that repeat themselves on a two-dimensional plane, and then they stack on top of themselves, and that’s how you get a layered 2D material.”

Toxic RNAs: The Hidden Cause of Neuron Death in Alzheimer’s Uncovered

A new Northwestern Medicine study shows that RNA interference may play a key role in Alzheimer’s. For the first time, scientists have identified short strands of toxic RNAs that contribute to brain cell death and DNA damage in Alzheimer’s and aged brains. Short strands of protective RNAs are decreased during aging, the scientists report, which may allow Alzheimer’s to develop.

The study also found that older individuals with a superior memory capacity (known as SuperAgers) have higher amounts of protective short RNA strands in their brain cells. SuperAgers are individuals aged 80 and older with a memory capacity of individuals 20 to 30 years younger.

“Nobody has ever connected the activities of RNAs to Alzheimer’s,” said corresponding study author Marcus Peter, the Tom D. Spies Professor of Cancer Metabolism at Northwestern University Feinberg School of Medicine. “We found that in aging brain cells, the balance between toxic and protective sRNAs shifts toward toxic ones.”