Bioengineered bacteria sneak past solid tumor defenses to guide CAR T cells’ attacks.
Category: biotech/medical – Page 484
A protein in the immune system can be manipulated to help overcome bowel cancer, according to new research from The Australian National University (ANU). The research is published in Science Advances.
Bowel cancer claims more than 100 lives in Australia each week, yet around 90% of cases can be successfully treated if detected early.
According to lead author Dr. Abhimanu Pandey, from ANU, the protein, known as Ku70, can be activated or “turned on” like a light switch by using a combination of new and existing drugs.
This microchip is the size of a grain of sand, and its job is to track data.
Inspired by nature, the latest microchip can dissolve and fly.
About the size of a grain of sand, the chips might be the smallest artificial flying structures yet built — gadgets that could one-day monitor air pollution and the spread of airborne diseases.
Why it matters: Size matters and sometimes smaller is better. With the microfliers, their small size is advantageous as it allows them to float like pollen or seeds, collecting environmental data on their tiny microchips along the way. Wireless transmitters can send the data to scientists before the chips land.
A University of Massachusetts Amherst team has made a major advance toward modeling and understanding how intrinsically disordered proteins (IDPs) undergo spontaneous phase separation, an important mechanism of subcellular organization that underlies numerous biological functions and human diseases.
IDPs play crucial roles in cancer, neurodegenerative disorders and infectious diseases. They make up about one-third of proteins that human bodies produce, and two-thirds of cancer-associated proteins contain large, disordered segments or domains. Identifying the hidden features crucial to the functioning and self-assembly of IDPs will help researchers understand what goes awry with these features when diseases occur.
In a paper published in the Journal of the American Chemical Society, senior author Jianhan Chen, professor of chemistry, describes a novel way to simulate phase separations mediated by IDPs, an important process that has been difficult to study and describe.
A team of biochemists at the Medical Research Council Laboratory of Molecular Biology at Cambridge has developed a new method to incorporate structurally unusual amino acids into proteins by using bacteria. The method is described in the journal Nature.
Prior research has shown that DNA codes for just 20 amino acids, the building blocks for making all the proteins used by living creatures. These are known as alpha amino acids. Prior research has also suggested that beneficial compounds could be created with a method to create proteins using beta amino acids. Researchers have suggested that applications could include the development of new kinds of medicines and possibly novel catalysts for manufacturing processes.
Such proteins have been engineered via syntheses in the lab. but scientists would prefer a more natural approach, which would be both cheaper and more efficient. This means that a technique is required to get a living cell to generate a desired protein using a beta amino acid.
Tisch Cancer Institute researchers have discovered that a certain type of chemotherapy improves the immune system’s ability to fight off bladder cancer, particularly when combined with immunotherapy.
These findings, published in Cell Reports Medicine, may explain why the approach, cisplatin chemotherapy, can lead to a cure in a small subset of patients with metastatic, or advanced, bladder cancer. Researchers also believe that their findings could explain why clinical trials combining another type of chemotherapy, carboplatin-based chemo, with immunotherapy have not been successful but others that use cisplatin with immunotherapy are successful.
“We have known for decades that cisplatin works better than carboplatin in bladder cancer, however, the mechanisms underlying those clinical observations have remained elusive until now,” said the study’s lead author Matthew Galsky, M.D., Co-Director of the Center of Excellence for Bladder Cancer at The Tisch Cancer Institute at Mount Sinai.
A new statistical tool developed by researchers at the University of Chicago improves the ability to find genetic variants that cause disease. The tool, described in a new paper published January 26, 2024, in Nature Genetics, combines data from genome-wide association studies (GWAS) and predictions of genetic expression to limit the number of false positives and more accurately identify causal genes and variants for a disease.
GWAS is a commonly used approach to identify genes associated with a range of human traits, including most common diseases. Researchers compare genome sequences of a large group of people with a specific disease, for example, with another set of sequences from healthy individuals. The differences identified in the disease group could point to genetic variants that increase risk for that disease and warrant further study.
Most human diseases are not caused by a single genetic variation, however. Instead, they are the result of a complex interaction of multiple genes, environmental factors, and host of other variables. As a result, GWAS often identifies many variants across many regions in the genome that are associated with a disease.
According to a paper submitted for peer review on January 4th, 2024, Lethal Infection of Human ACE2-Transgenic Mice Caused by SARS-CoV-2-related Pangolin Coronavirus GX_P2V(short_3UTR), a new lab-created coronavirus has the potential to kill 100% of those infected with the virus within 8 days of infection.
The mice were genetically modified to express the human ACE2 receptor. This is the receptor responsible for allowing coronavirus to gain cellular entry. The lab infected mice with a coronavirus engineered from a strain found in pangolins. Pangolins are medium-sized animals growing to 12 — 30 inches in length and have the appearance of a scale-plated anteater.
Researchers monitored the mice for signs of infection by recording body weight, taking tissue samples, and monitoring for other symptoms. By the third day post-infection, tissue samples from the infected mice had a significant amount of viral RNA in the brain, eye, lung, and nasal tissue.
👁️ 🧠 🔬
A recent study published in the journal Npj Parkinson’s Disease investigated whether increased thinning rate in the parafoveal ganglion cell-inner plexiform layer (pfGCIPL) and peripapillary retinal nerve fiber layer (pRNFL) indicates the progression of the Parkinson’s disease (PD).
Study: Association of retinal neurodegeneration with the progression of cognitive decline in Parkinson’s disease. Image Credit: BioFoto / Shutterstock
Background
Retinal changes are robustly associated with neurodegenerative diseases, such as PD. The changes in retinal layer thickness can be assessed using high-resolution optical coherence tomography (OCT). Among different retinal layers, the ganglion cell-inner plexiform layer (GCIPL) can be used as a biomarker to determine cognitive decline and neurodegeneration.