Toggle light / dark theme

Anti-aging molecule successfully restores multiple markers of youth

In pre-clinical trials, a small molecule effectively regrew neurons, reduced inflammation, and improved memory, speed, coordination, grip strength, and more. The finding could have a profound impact on aging and the diseases that accompany it.

In conducting the research, scientists at the University of Texas MD Anderson Cancer Center, turned their focus to telomerase reverse transcriptase (TERT), an enzyme that is known to help synthesize and extend telomeres, the protective caps at the ends of chromosomes that help cells divide. TERT levels are reduced as we age.

Without sufficient levels of TERT, when our telomeres shrink or get seriously modified, they can lead to a process that continually damages our DNA, which causes cells to release inflammatory compounds that can in turn lead to aging, tissue damage, and cancer.

Can MRI Help Elucidate Iron-Based Neurotoxicity?

A new technique combining magnetic resonance imaging and x-ray fluorescence can characterize, with single-neuron resolution, the presence of toxic forms of iron that might be associated with neurodegenerative diseases.

Iron plays a major role in life. Most obviously, it keeps us alive, helping to ferry oxygen around our bloodstreams. It is also essential in cellular energy production, in the immune-system response, and in brain function—where it helps catalyze the synthesis of dopamine and other neurotransmitters. Iron can, however, be a double-edged sword. An iron excess has been implicated in many ailments, including neurodegenerative conditions such as Alzheimer’s, multiple sclerosis, and Parkinson’s disease—where dopaminergic neurons (neurons that use iron to synthesize dopamine) degenerate. It is thought that the toxicity of iron depends on how it is stored: iron firmly bound within proteins such as ferritin may be less toxic than iron more loosely bound to low-affinity sites, where it is more able to participate in reactions that generate cell-damaging hydroxyl radicals [1].

Researchers capture detailed picture of electron acceleration in one shot

Adjusting experimental methods achieved the first “single-shot” diagnosis of electron acceleration through a laser wakefield accelerator along a curved trajectory, according to a recent study led by University of Michigan researchers. The findings are published in the journal Physical Review Letters.

This optical-based technique could help engineers develop more powerful electron accelerators for fundamental studies of quantum and —or more compact accelerators for use in medicine and industry.

Compared to traditional accelerators which can be kilometers long, laser wakefield accelerators can apply 1,000 times more energy per meter, allowing a vastly more compact design able to fit into a large room.

Revolutionizing Regeneration: Rat Stem Cells Restore Mouse Brain Circuits

Research teams have successfully regenerated mouse brain circuits using rat stem cells, showcasing a new method for restoring brain function and studying interspecies brain development.

These findings open up possibilities for treating neurological diseases and understanding brain evolution, while also hinting at future clinical applications and ethical challenges in using similar techniques for human organ transplantation.

Scientists regenerate neural pathways in mice with cells from rats.

MIT Reveals Hidden Codes in DNA: A Breakthrough That Could Revolutionize Medicine

MIT researchers have innovated a method to observe the interaction between genes and enhancers by monitoring their activation times, helping to pinpoint drug targets for genetic disorders. This technique also enhances understanding of eRNA’s function in gene regulation and disease treatment.

Gene Expression and Enhancer Mapping

Although the human genome contains about 23,000 genes, only a fraction of those genes are turned on inside a cell at any given time. The complex network of regulatory elements that controls gene expression includes regions of the genome called enhancers. These are often located far from the genes that they regulate.

Non-Coding RNA can Beneficially Boost Gene Activity in Cells

Proteins carry out many of the essential function of cells, and scientists have spent years learning about the expression of protein-coding genes. When genes are active, they are transcribed as messenger RNA (mRNA) molecules, which are then exported from the nucleus of the cell, where the DNA is kept, and into the cytoplasm, where mRNA molecules are translated into proteins. But many RNA molecules that do not code for protein are also exported from the nucleus and into the cytoplasm.

Scientists wanted to know more about what this non-coding RNA is doing, especially since it can often be found at high levels. Reporting in Nature, scientists have now used yeast cells to show that many of these non-coding RNA molecules are antisense RNAs (asRNAs), which have sequences that are complementary to mRNAs. So the right asRNA can anneal to its mRNA match. This turns out to promote the export of mRNAs from the nucleus to the cytoplasm, which boosts gene expression; a kind of “superhighway” for the transport of mRNAs is created with asRNAs to accelerate gene activity.

New technique gives robotic faces living human skin

Robots with human skin.


In a breakthrough that isn’t at all creepy, scientists have devised a method of anchoring living human skin to robots’ faces. The technology could actually have some valuable applications, beyond making Westworld-like scenarios a reality.

Two years ago, Prof. Shoji Takeuchi and colleagues at the University of Tokyo successfully covered a motorized robotic finger with a bioengineered skin made from live human cells.

It was hoped that this proof-of-concept exercise might pave the way not only for more lifelike android-type robots, but also for bots with self-healing, touch-sensitive coverings. The technology could additionally be used in the testing of cosmetics, and the training of plastic surgeons.

Book Review: ‘The Singularity Is Nearer,’ by Ray Kurzweil

THE SINGULARITY IS NEARER: When We Merge With A.I., by Ray Kurzweil ______ A central conviction held by artificial intelligence boosters, but largely ignored in public discussions of the technology, is that the ultimate fulfillment of the A.I. revolution will require the deployment of microscopic robots into our veins. In the short term, A.I. may help us print clothing on demand, help prevent cancer and liberate half of the work force. But to…

Neuralink’s first human patient Noland Arbaugh says his brain chip can be hacked: ‘It is what it is’

Hacking my brain implant wouldn’t do much, he asserted, adding, “You might be able to see like some of the brain signals. You might be able to see some of the data that Neuralink’s collecting.”

Get ready to catch the final stages of the World Cup only on Crickit. Anytime, Anywhere. Explore now!

Norland Arbaugh did not specify the data that is being collected by Neuralink chip which is almost the size of a coin and contains thousands of electrodes that monitor and stimulate brain activity, as per the company. This information is digitally transmitted to researchers.