Toggle light / dark theme

Neurons communicate through chemical signals known as neurotransmitters. Researchers at St. Jude Children’s Research Hospital, leveraging their expertise in structural biology, have successfully elucidated the structures of the vesicular monoamine transporter 2 (VMAT2), a key component of neuronal communication.

By visualizing VMAT2 in different states, scientists now better understand how it functions and how the different shapes the protein takes influence drug binding — critical information for drug development to treat hyperkinetic (excess movement) disorders such as Tourette syndrome. The work was recently published in the journal Nature.

Researchers at MIT, the Broad Institute of MIT and Harvard, Integrated Biosciences, the Wyss Institute for Biologically Inspired Engineering, and the Leibniz Institute of Polymer Research have identified a new structural class of antibiotics.

Scientists have discovered one of the first new classes of antibiotics identified in the past 60 years, and the first discovered leveraging an AI-powered platform built around explainable deep learning.

Published in Nature today, December 20, the peer-reviewed paper, entitled “Discovery of a structural class of antibiotics with explainable deep learning,” was co-authored by a team of 21 researchers, led by Felix Wong, Ph.D., co-founder of Integrated Biosciences, and James J. Collins, Ph.D., Termeer Professor of Medical Engineering and Science at MIT and founding chair of the Integrated Biosciences Scientific Advisory Board.

Precise observation using ultra-high magnetic field 7T MRI.

For the first time, a research team in Korea has discovered there is a significant relationship between depression and the taurine concentration in the hippocampus, an area of the brain responsible for memory and learning functions. This discovery provides the opportunity to publicize the role and importance of taurine in future prevention, diagnosis, and treatment of depression.

Advanced imaging techniques reveal key insights.

USC Dornsife’s CReATiNG technique revolutionizes synthetic biology by facilitating the cost-effective construction of synthetic chromosomes, promising significant advancements in various scientific and medical fields.

A groundbreaking new technique invented by researchers at the USC Dornsife College of Letters, Arts and Science may revolutionize the field of synthetic biology. Known as CReATiNG (Cloning Reprogramming and Assembling Tiled Natural Genomic DNA), the method offers a simpler and more cost-effective approach to constructing synthetic chromosomes. It could significantly advance genetic engineering and enable a wide range of advances in medicine, biotechnology, biofuel production, and even space exploration.

Simplifying Chromosome Construction

In a new paper, Sinclair and his co-authors outline a theory arguing that epigenetic changes are the underlying cause of aging [1].

It is not every day that one of the most prominent geroscientists presents a new theory of aging. David Sinclair of Harvard, along with two co-authors, Yuancheng Ryan Lu and Xiao Tian, have just published “The Information Theory of Aging” in Nature Aging. This theory was proposed by Sinclair years ago [2], and this new paper is an attempt to summarize it based on the most recent research.

The ability to store and retrieve information is central to life, which relies on the constant reproduction of complex organisms using DNA blueprints. However, on top of that digital genetic code, there is a much messier realm of epigenetics, which regulates how genetic information is translated into proteins.

Why are we mentally sharper at certain times of day? A study led by Jonathan Lipton MD, Ph.D., at Boston Children’s Hospital spells out the relationship between circadian rhythms—the body’s natural day/night cycles—and the brain connections known as synapses.

The work is the first to provide a cellular and molecular explanation for natural fluctuations over the day in alertness, cognition, and the ability to learn and remember.

“We have known for more than a century that the time of day influences cognition and memory, but until now the mechanisms have been elusive,” says Lipton, a sleep physician in the Department of Neurology and researcher in the F.M. Kirby Neurobiology Center.

DNA is the building block of life, and the genetic alphabet comprises just four letters or nucleotides. These biochemical building blocks comprise all types of DNA, and scientists have long wondered whether creating working artificial DNA would be possible. Now, a breakthrough may finally provide the answer.

The main goal of a new study, the findings of which were published in Nature Communications this month, shows that scientists may finally be able to create new medicines for certain diseases by creating DNA with new nucleotides that can create custom proteins.

Being able to create artificial DNA could open the door for several important uses. Being able to expand the genetic code could very well diversify the “range of molecules we can synthesize in the lab,” the study’s senior author Dong Wang, Ph.D., explained (via Phys.org).