Toggle light / dark theme

Stanford Reverses Cognitive Decline in Alzheimer’s With Brain Metabolism Drug

Neuroscientists at Stanford have linked Alzheimer’s disease to the disruption of brain metabolism via the kynurenine pathway, which is affected by amyloid plaque and tau proteins.

Their research has demonstrated that drugs blocking this pathway can restore cognitive function in Alzheimer’s mice by improving brain metabolism. This discovery not only bridges the gap between neuroscience and oncology but also provides a fast track to repurposing existing drugs for Alzheimer’s treatment.

Alzheimer’s disease and brain energy metabolism.

Brain Overgrowth Linked to Autism Symptom Severity

Summary: Researchers have identified a link between brain overgrowth and the severity of social and communication symptoms in children with autism spectrum disorder (ASD).

By analyzing MRI scans and conducting experiments with brain organoids, the study found that children with the most severe ASD symptoms had significantly larger brains. This enlargement is associated with altered activity of the enzyme Ndel1, which plays a crucial role in neuron development.

The findings open new avenues for understanding ASD and its varying symptom severity.

Legal challenges in human brain organoid research and its applications

A study appearing in Journal of Bioethical Inquiry explored the legal and ethical challenges expected to arise in human brain organoid research.

Human brain organoids are three-dimensional neural tissues derived from that can mimic some aspects of the human brain. Their use holds incredible promise for medical advancements, but this also raises complex ethical and legal questions that need careful consideration.

Seeking to examine the various legal challenges that might arise in the context of human brain research and its applications, the team of researchers, which included a legal scholar, identified and outlined potential legal issues.

Synthetic Biology in Medicine: How it’s Used

The future of medicine lies in synthetic biology! In this video, you’ll learn how synthetic biology is used in healthcare and why it can help develop cancer treatments and much more.

Are you interested in furthering the field of biology or medicine? Visit uvu.edu to carve your path.

Instagram: / utah.valley.university.

Facebook: / utahvalleyuniversity.

LinkedIn: / utah-valley-university.

Twitter: / uvu.

Mind Meld: Brain-Computer Interfaces Unlock the Future (2024 and Beyond!)

Further, “the necessity to secure private ideas, plans, and brain data from unpermitted viewing is accorded to Dr. Anita S Jwa by the phrase,” she argues. Besides that, the ethical implications in the fields of informed consent, coercion, and fairness with respect to the common attributes of the BCIs must be critically considered. For example, consider a scenario where a BCI is used to control a prosthetic limb. Without proper privacy measures, “unauthorised access to the BCI could lead to manipulation of the prosthetic limb,” posing risks to the user’s safety and autonomy.

Overcoming these difficulties requires the joint efforts of all the stakeholders, such as researchers, policymakers, and industry leaders. In the same way, we have to critically assess the technical, ethical, and accessibility issues in BCI. We may then be able to capture the potential of these BCIs and ultimately improve human lives.

In this instance, just imagine that we are submerging into the future of BCIs, and to my surprise, it feels like living in a movie where sci-fi is a reality! BCIs are going to be able to do all kinds of really advanced things very soon. People are going to think that they are very cool. We are entering an entirely new realm of brainy gadgets that are becoming smaller, sleeker, and oh-so-wearable. It is now all gear change; the future of BCI is almost as organic as slipping on your dream pair of sunglasses.

Superintelligence, superlongevity and superhappiness: How billionaire transhumanists want to converge humanity and artificial intelligence

M any prominent people in the tech industry have talked about the increasing convergence between humans and machines in coming decades. For example, Elon Musk has reportedly said he wants humans to merge with AI “to achieve a symbiosis with artificial intelligence”

His company Neuralink aims to facilitate this convergence so that humans won’t be “left behind” as technology advances in the future. While people with disabilities would be near-term recipients of these innovations, some believe technologies like this could be used to enhance abilities in everyone.

These aims are inspired by an idea called transhumanism, the belief that we should use science and technology to radically enhance human capabilities and seek to direct our own evolutionary path. Disease, aging and death are all realities transhumanists wish to end, alongside dramatically increasing our cognitive, emotional and physical capacities.

Pong Prodigy: “Hydrogel Brain” Defies Expectations With Deep Learning

Researchers have developed a hydrogel that can learn to play the game Pong, demonstrating that even simple materials can exhibit adaptive behaviors akin to those seen in living systems.

The study, led by Dr. Yoshikatsu Hayashi from the University of Reading, also revealed that similar hydrogels could mimic cardiac tissue, potentially offering new avenues for studying heart arrhythmias and reducing animal testing in medical research.

“Hydrogel Brain” Learns To Play Pong

Over a Hundred Times Smaller Than the Width of a Hair — Revolutionary Tiny Sensor Reveals Hidden Neuron Activity

Rice University researchers have developed a new implantable sensor, spinalNET, capable of recording the electrical activity of spinal neurons in freely moving subjects. This breakthrough could help unlock the complexities of how spinal neurons process sensory and motor functions, potentially leading to better treatments for spinal cord diseases and injuries.

Implantable technologies have significantly improved our ability to study and even modulate the activity of neurons in the brain. However, neurons in the spinal cord are harder to study in action.

“If we understood exactly how neurons in the spinal cord process sensation and control movement, we could develop better treatments for spinal cord disease and injury,” said Yu Wu, a research scientist who is part of a team of Rice University neuroengineers working on a solution to this problem.