Toggle light / dark theme

Silicon Valley billionaire says AI will take over 80% of work in 80% of jobs

“I estimate that 80% of 80% of all jobs, maybe more, can be done by an AI,” famed investor and entrepreneur Vinod Khosla has warned. “Be it primary care doctors, psychiatrists, sales people, oncologists, farm workers or assembly line workers, structural engineers, chip designers, you name it.”


Say hello to a universal income and a 3-day week.

A two-dose schedule could make HIV vaccines more effective

Several years ago, MIT researchers showed that administering a series of escalating doses of an HIV vaccine over a two-week period could help overcome a part of that challenge by generating larger quantities of neutralizing antibodies. However, a multidose vaccine regimen administered over a short time is not practical for mass vaccination campaigns.

In a new study, the researchers have now found that they can achieve a similar immune response with just two doses, given one week apart. The first dose, which is much smaller, prepares the immune system to respond more powerfully to the second, larger dose.

AF hospital adds ‘virus-zapping’ robot to inventory

This was created by a company called Xenex a decade ago In San Antonio Texas, where I used to live.


JOINT BASE LANGLEY-EUSTIS, Va. (AFNS) — Standing at 5 feet 2 inches tall, U.S. Air Force Hospital Langley’s newest staff member doesn’t initially have a commanding presence; however, after five minutes, its impact has the potential to save countless lives around the world.

The 633rd Medical Group received a germ-zapping robot, nicknamed “Saul,” which harnesses the power of technology to kill off viruses — including the Ebola virus. Airmen were given a demonstration of the robots functions and capabilities from Geri Genant, the Xenex Healthcare Services implementation manager.

Shortly after the president issued an executive order addressing the critical issue of Ebola, the 633rd MDG responded with cutting-edge technology to protect the health of the service members, their families and the community.

George Church lab spawns $75m cell therapy startup

GC Therapeutics’ plug-and-play stem cell programming platform aims to reduce cell therapy development time by up to 100 times.

Cell therapies have revolutionized the treatment of certain disease areas; however, challenges in scaling these therapies…


Cell therapy startup GC Therapeutics (GCTx) has emerged from the lab of renowned geneticist George Church, securing a $65 million Series A funding round that brings the total raised by the company to a cool $75 million. The company is on a mission to enable the next generation of cell therapies through its proprietary TFome platform, which GCTx claims is the first plug-and-play induced pluripotent stem cell (iPSC) cellular programming platform.

Developed by a team of scientists in Professor Church’s lab of at Harvard Medical School and the Wyss Institute, TFome aims to help streamline the complex, error-prone and costly process of cell therapy development by accelerating production and enhancing the quality of cell therapies across a wide range of disease areas. The power of the platform lies in its ability to harness transcription factors, the proteins that regulate gene expression and determine cell fate. By precisely controlling these factors, the platform can guide stem cells to differentiate into any desired cell type in a highly efficient and scalable manner.

Offering a single-step process that enables the efficient differentiation of iPSCs into various functional cell types with over 90% efficiency in just four days, GCTx claims that TFome has the potential to reduce the time associated with cell therapy development by up to 100 times compared with conventional methods, while also improving the potency, efficiency, and quality of the resulting cells. The company aims to leverage the platform to develop off-the-shelf iPSC-based medicines, which can be produced quickly and at a lower cost than current alternatives.

80% of Developmental Disorders Linked to Known Recessive Genes

Summary: The largest and most diverse study on recessive genetic changes in developmental disorders reveals that over 80% of cases caused by recessive variants are linked to known genes. Researchers analyzed data from nearly 30,000 families and found that a shift in focus from gene discovery to interpreting changes in known genes could double diagnosis rates.

The study highlights the importance of genetic background in diagnosis and suggests that some patients may have multiple contributing genetic factors. These findings could lead to more personalized and accurate diagnoses for families affected by developmental disorders.

Wobbling Mars: Detecting Dark Matter Through Primordial Black Holes

Could slight wobbles in the orbit of Mars be caused by microscopic black holes that have existed since the Big Bang? This is what a recent study published in Physical Review D hopes to address as a team of researchers from the Massachusetts Institute of Technology (MIT) and UC Santa Cruz investigated how these miniscule black holes could be comprised of dark matter, which was first hypothesized in the 1970s, resulting in miniscule wobbles in the orbit of Mars. This study holds the potential to help researchers better understand the characteristics of dark matter, which remains one of the most mysterious phenomena in the universe.

“Given decades of precision telemetry, scientists know the distance between Earth and Mars to an accuracy of about 10 centimeters,” said Dr. David Kaiser, who is a professor of physics and the Germeshausen Professor of the History of Science at MIT, and a co-author on the study. “We’re taking advantage of this highly instrumented region of space to try and look for a small effect. If we see it, that would count as a real reason to keep pursuing this delightful idea that all of dark matter consists of black holes that were spawned in less than a second after the Big Bang and have been streaming around the universe for 14 billion years.”

For the study, the researchers began with handwritten calculations produced by Tung X. Tran, who eventually became the study’s lead author and is a graduate student at Stanford University, which calculated the results if a primordial black hole passed through a human body, which he calculated would push the person approximately 20 feet.

AI-based Tongue Imaging could help enable Non-Invasive Detection of Coronary Artery Disease

Coronary artery disease (CAD) is the most common cause of illness-based death throughout the world. According to the World Health Organization, CAD causes 17.9 million deaths per year worldwide, nearly one-third of all illness-based deaths annually.

Coronary angiography is currently the best method of confirming a CAD diagnosis, but it is expensive and invasive, poses risks to patients, and is not suitable for early diagnosis and assessing disease risk.

Seeking a safer, lower-cost and more efficient diagnostic method, a research team from Beijing University of Chinese Medicine’s School of Traditional Chinese Medicine, Beijing University of Chinese Medicine’s School of Life Science, and Hunan University of Chinese Medicine’s School of Traditional Chinese Medicine has used artificial intelligence (AI) to develop a diagnostic algorithm based on tongue imaging. Their work is published in Frontiers in Cardiovascular Medicine.