Toggle light / dark theme

Minimally invasive neural interface allows brain access without skull opening

A team of researchers led by Rice University’s Jacob Robinson and the University of Texas Medical Branch’s Peter Kan has developed a technique for diagnosing, managing and treating neurological disorders with minimal surgical risks. The team’s findings were published in Nature Biomedical Engineering.

While traditional approaches for interfacing with the nervous system often require creating a hole in the skull to with the brain, the researchers have developed an innovative method known as endocisternal interfaces (ECI), allowing for electrical recording and stimulation of neural structures, including the brain and , through (CSF).

“Using ECI, we can access multiple brain and spinal cord structures simultaneously without ever opening up the skull, reducing the risk of complications associated with traditional surgical techniques,” said Robinson, professor of electrical and computer engineering and bioengineering.

New Study Connects Air Pollution With Increased Eczema Risk

Research from Yale School of Medicine indicates a strong link between air pollution levels and eczema prevalence in the U.S.

The study found that residents in high PM2.5 areas are twice as likely to develop eczema, suggesting significant health implications of air pollution on skin conditions.

A new study published today, November 13, 2024, in the journal PLOS ONE has found that people living in areas with higher air pollution are more likely to have eczema. Led by Dr. Jeffrey Cohen of Yale School of Medicine, the study explores the potential environmental impact of industrialization on skin health.

Transparent New Material Paves the Way for Advanced Electronics and Quantum Devices

Researchers at the University of Minnesota have developed a new material poised to revolutionize the next generation of high-power electronics, making them faster, more transparent, and more efficient. This engineered material enables electrons to move at higher speeds while staying transparent to both visible and ultraviolet light, surpassing previous performance records.

The research, published in Science Advances, a peer-reviewed scientific journal, marks a significant leap forward in semiconductor design, which is crucial to a trillion-dollar global industry expected to continue growing as digital technologies expand.

Semiconductors power nearly all electronics, from smartphones to medical devices. A key to advancing these technologies lies in improving what scientists refer to as “ultra-wide band gap” materials. These materials can conduct electricity efficiently even under extreme conditions. Ultra-wide band gap semiconductors enable high-performance at elevated temperatures, making them essential for more durable and robust electronics.

Inflammatory promote the transformation of prostate cancer cells into treatment-resistant cells

There is a challenge related to prostate cancer from cancer cells that form resistance to treatments as the disease progresses. For medical science, these resistance mechanisms are not yet fully understood.

A new study by the University of Eastern Finland has filled some of this knowledge gap. The scientists found that inflammation-promoting immune cells, M1 macrophages, can transform cancer cells into stem-like cells and thus immune to treatment.

The study examined the impact of factors promoting inflammation in a tumour microenvironment on the progression of prostate cancer. Researchers focused particularly on the role of M1 and M2 macrophages in the tumour microenvironment. Macrophages are immune cells whose large number in the tumour area is often a sign of poor prognosis in relation to prostate cancer. These white blood cells stimulate the action of other immune system cells.

Uncovering Hidden Brain Signals

Summary: A recent study offers new insights into how brain regions coordinate during rest, using resting-state fMRI (rsfMRI) and neural recordings in mice. By comparing blood flow patterns with direct neural activity, researchers found that some brain activity remains “invisible” in traditional rsfMRI scans. This hidden activity suggests that current brain imaging techniques may miss key elements of neural behavior.

The findings, potentially applicable to human studies, may refine our understanding of brain networks. Further research could improve the accuracy of interpreting brain activity.

When muscles work out, they help neurons grow: Biochemical and physical effects of exercise could help heal nerves

This study explores how muscle contractions, such as those that occur during exercise, influence motor neurons—the cells responsible for controlling muscle movement.


There’s no doubt that exercise does a body good. Regular activity not only strengthens muscles but can bolster our bones, blood vessels, and immune system.

Now, MIT engineers have found that exercise can also have benefits at the level of individual neurons. They observed that when muscles contract during exercise, they release a soup of biochemical signals called myokines.

In the presence of these -generated signals, neurons grew four times further compared to neurons that were not exposed to myokines. These cellular-level experiments suggest that exercise can have a significant biochemical effect on nerve growth.

Metagenomic sequencing test proves effective in diagnosing almost any kind of pathogen

A genomic test developed at UC San Francisco to rapidly detect almost any kind of pathogen—virus, bacteria, fungus or parasite—has proved successful after a decade of use.

The test has the potential to vastly improve care for neurological infections that cause diseases like meningitis and encephalitis, as well as speed up the detection of new viral pandemic threats. It uses a powerful genomic sequencing technique, called metagenomic next-generation sequencing (mNGS).

Rather than looking for one type of pathogen at a time, mNGS analyzes all the nucleic acids, RNA and DNA, that are present in a sample.