Toggle light / dark theme

Immune Restoration Results from Placing a Young Thymus into an Aged Mouse

Decline of the immune system is one of the areas SENS are working on, with just over a week left for the Winter Fundraiser and Triple donation match now is the time to support their work!


Immunosenescence is a key process in aging and rejuvention or replacement of the thymus which gradually wastes away as we age exposing us to pathogens is an important step in dealing with age-related diseases. SENS is working on these problems so if you want to see solutions please consider donating to our Winter Fundraiser today on the link below:

Donate

“As we age and are exposed to persistent pathogens, especially cytomegalovirus, ever more of the T cell population becomes specialized in ways that remove the ability to deal with new threats. A flood of new immune cells would help to restore the balance, and in recent years researchers have demonstrated that transplanting a young and active thymus into an old mouse does in fact restore measures of immune function, and extends life span as well.”

Light therapy effectively treats early prostate cancer

Light therapy kills cancer in new no surgery, no chemo approach.


A new non-surgical treatment for low-risk prostate cancer can effectively kill cancer cells while preserving healthy tissue, reports a new UCL-led phase III clinical trial in 413 patients. The trial was funded by STEBA Biotech which holds the commercial license for the treatment.

The new , ‘vascular-targeted photodynamic therapy’ (VTP), involves injecting a light-sensitive drug into the bloodstream and then activating it with a laser to destroy tumour tissue in the prostate. The research, published in The Lancet Oncology, found that around half (49%) of patients treated with VTP went into complete remission compared with 13.5% in the control group.

“These results are excellent news for men with early localised prostate cancer, offering a treatment that can kill cancer without removing or destroying the prostate,” says lead investigator Professor Mark Emberton, Dean of UCL Medical Sciences and Consultant Urologist at UCLH. “This is truly a huge leap forward for , which has previously lagged decades behind other solid cancers such as breast cancer. In 1975 almost everyone with breast cancer was given a radical mastectomy, but since then treatments have steady improved and we now rarely need to remove the whole breast. In prostate cancer we are still commonly removing or irradiating the whole prostate, so the success of this new tissue-preserving treatment is welcome news indeed.”

CRISPR gene editing human trials in China and US offer hope for countless lives

The biotech battle between China and the US has begun as we predicated when we announced the first CRISPR deployment in humans last month. The US has upped the ante and is taking a step further in the race for the biotech crown. All great news for us as the more competition the faster progress will move so let’s hope there is a fierce battle for biotech coming.


In 2015, a little girl called Layla was treated with gene-edited immune cells that eliminated all signs of the leukemia that was killing her. Layla’s treatment was a one-off, but by the end of 2017, the technique could have saved dozens of lives.

It took many years to develop the gene-editing tool that saved Layla, but thanks to a revolutionary method known as CRISPR, this can now be done in just weeks.

In fact, CRISPR works so well that the first human trial involving the method has already begun. In China, it is being used to disable a gene called PD-1 in immune cells taken from individuals with cancer. The edited cells are then injected back into each person’s body.

Presenting Mitochondrial Rejuvenation at a Google Tech Talk

Google Tech Talk with the SENS Research Foundation!


Commentary about our recent Google Tech Talk about the MitoSENS project from FightAging!

“As the clock ticks on this year’s SENS rejuvenation research fundraiser — less than two weeks to go now, and plenty left in the matching fund for new donations — it is good to be reminded of the progress that the SENS Research Foundation has accomplished with the charitable funding of recent years. With that in mind, today I’ll point you to a recent Google Tech Talk that provides a layperson’s introduction to one of the projects that our community has funded, fixing the problem of mitochondrial damage in aging. The point of the SENS (Strategies for Engineered Negligible Senescence) research programs is to accelerate progress towards specific forms of therapy that can bring aging under medical control.”

Scientists produce functional heart pacemaker cells

Tissue engineering and Stem cells are a large part of the rejuvenation biotechnology toolkit. Here we have yet more progress and this time the pacemaker cells are replicated for possible use in biological pacemaker therapies.

“Scientists from the McEwen Centre for Regenerative Medicine, University Health Network, have developed the first functional pacemaker cells from human stem cells, paving the way for alternate, biological pacemaker therapy.”

New construction role found for cell demolition tool

Lysosomes originally thought to be the dust bins of the body have recently been found to have some constructive roles too.


A new role has been discovered for a well-known piece of cellular machinery, which could revolutionise the way we understand how tissue is constructed and remodelled within the body.

Lysosomes are small, enzyme-filled sacks found within cells, which break down old cell components and unwanted molecules.

Their potent mixture of destructive enzymes also makes them important in protecting cells against pathogens such as viruses by degrading cell intruders.

FDA approves pink, genetically engineered pineapple from Del Monte

(FoxNews.com) — Food producer Del Monte has received approval from the Food and Drug Administration to start selling a genetically engineered pineapple with pink flesh.

The new species Ananas comosus has been given the more consumer-friendly name of the “Rosé” and, according to The Packer, Del Monte has quietly been working on the fruit’s development since 2005.

So what makes the usually golden-colored fruit pink? The patened pineapple DNA is injected with a healthy dose of lycopene, the bright red pigment found in tomatoes and watermelons.

14-Year-Old Girl Who Died of Cancer Wins Right to be Cryogenically Frozen

A 14-year-old girl who said before dying of cancer that she wanted a chance to live longer has been allowed by the high court to have her body cryogenically frozen in the hope that she can be brought back to life at a later time.

The court ruled that the teenager’s mother, who supported the girl’s wish to be cryogenically preserved, should be the only person allowed to make decisions about the disposal of her body. Her estranged father had initially opposed her wishes.

During the last months of her life, the teenager, who had a rare form of cancer, used the internet to investigate cryonics. Known only as JS, she sent a letter to the court: “I have been asked to explain why I want this unusual thing done. I’m only 14 years old and I don’t want to die, but I know I am going to. I think being cryo‐preserved gives me a chance to be cured and woken up, even in hundreds of years’ time.

CRISPR study reveals unexpected roles of non-coding RNAs

So much for “Junk” DNA being a load of old rubbish!


UC San Francisco researchers have taken a major step toward understanding the function of the tens of thousands of human genes that do not code for proteins, a phenomenon considered one of the key remaining mysteries of the human genome. New findings, which focused on the roles of these genes in human cancer cells, suggest a possible new strategy for targeting the disease.

In recent years, researchers have recognized that non-coding regions of the genome—long dismissed as “junk DNA”—are actually key players in cell biology, development, and disease. However, the vast majority of these regions have not yet been extensively studied.

Now UCSF scientists have developed an approach to studying the function of genes that produce RNA transcripts but no protein – called long non-coding RNAs (lncRNAs)—at an unprecedented scale. In a proof of principle experiment, the researchers set out to look for common lncRNAs required for the growth of many different types of cancer cells. To their surprise, they found that each cancer cell line they tested relied upon a different set of IncRNAs for growth and survival, suggesting that these molecules might be promising targets for precision cancer therapies.

/* */