Toggle light / dark theme

Glucosepane is one of the most significant mechanisms of aging and yet very few people are working on it!


As we age skin and blood vessels lose their elasticity. People care too much about the skin and too little about the blood vessels, but that is always the way of it. Appearance first and substance later, if at all. Yet you can live inside an aged skin; beyond the raised risk of skin cancer its damaged state arguably only makes life less pleasant, and the present state of medical science can ensure that the numerous age-related dermatological dysfunctions can be kept to a state of minor inconvenience. Loss of blood vessel elasticity, on the other hand, will steadily destroy your health and then kill you. Arterial stiffening causes remodeling of the cardiovascular system and hypertension. The biological systems that regulate blood pressure become dysfunctional as blood vessels depart from ideal youthful behavior, creating a downward spiral of increasing blood pressure and reactions to that increase. Small blood vessels fail under the strain in ever larger numbers, damaging surrounding tissue. In the brain this damage contributes to age-related cognitive decline by creating countless tiny, unnoticed strokes. Ultimately this process leads to dementia. More important parts of the cardiovascular system are likely to fail first, however, perhaps causing a stroke, or a heart attack, or the slower decline of congestive heart failure.

From what is known today, it is reasonable to propose that the two main culprits driving loss of tissue elasticity are sugary cross-links generated as a byproduct of the normal operation of cellular metabolism and growing numbers of senescent cells. Elasticity is a property of the extracellular matrix, an intricate structure of collagens and other proteins created by cells. Different arrangements of these molecules produce very different structures, ranging from load-bearing tissues such as bone and cartilage to elastic tissues such as skin and blood vessel walls. Disrupting the arrangement and interaction of molecules in the extracellular matrix also disrupts its properties. Persistent cross-links achieve this by linking proteins together and restricting their normal range of motion. Senescent cells, on the other hand, secrete a range of proteins capable of breaking down or remodeling portions of the surrounding extracellular matrix, and altering the behavior of nearby cells for the worse.

The most important cross-linking compound in humans is glucosepane. Our biochemistry cannot break down glucosepane cross-links, and as a result it accounts for more than 99% of cross-links in our tissues. This isn’t a big secret. Given this you might expect to find researchers working flat out in scores of laboratories to find a viable way to break it down. After all here we have one single target molecule, and any drug candidate capable of clearing even half of existing cross-links would provide a treatment that can both reverse skin aging and vascular aging to a much greater degree than any presently available therapy. The size of the resulting market is every human being, the potential for profit staggering. Yet search on PubMed, and this is all of relevance that you will see published on the topic in the past few years:

Read more

If human-less self-driving cars of the future creep you out, then this latest experimental automotive technology from China might offer you some respite. Or freak creep you out even more. Researchers from the port city of Tianjin have revealed what they claim is the country’s first ever car to be driven without the use of human hands or feet but with a driver still in control. All it takes is some brain power. And some highly specialized equipment, of course.

Mind-reading devices aren’t actually new. In fact, many companies and technologies make that claim year after year, but few have actually been able to deliver an actual consumer product, with most successful prototypes designed for therapeutic or medical uses. The theory, however, is the same throughout. Sensors read electroencephalogram or EEG from the wearer’s brain. These are then interpolated and interpreted as commands for a computer. In this case, the commands are mapped to car controls.

The application of direct brain control to driving is a two-edged sword. On the one hand, removing the delay between brain to muscle movement, which sometimes can be erroneous, could actually lead to better driver safety. On the other hand, given how easily drivers can be distracted even while their hands are on the wheel, the idea is understandably frightening to some.

Read more

Can we end violence? Can we create greater emotional well being and intellectual equality for the greater well being of humanity? Will we be able to keep up with machines? How can we augment our intelligence? Could we cure mental illness? After advancements in aging the next major area of research from a standpoint of eliminating personal and global suffering would be upgrades in intelligence. Transhumanist values at their core want to eliminate suffering and existential risk to people’s lives. With well founded logic, these goals are not completely out of reach, it is possible but as usual, we will have to take the complex issue from many angles and from the standpoint of a systems engineer, but let’s look at some fun stuff before we get into the heavy stuff.

The Benefits of Intelligence Upgrades

So, what is the benefit for intelligence upgrades for every day people? We live in a time of exponential technology and vast amounts of face paced information, breakthroughs and invention. So, the most obvious answer to what is the benefit of intelligence upgrade is dealing with the massive amount of information one needs to keep up with daily to be on top of the game for work, for research or for business. Sometimes it can be our mere storage capacity that limits us in our abilities to interact with this information, at other times it is our processing speed, and most fundamentally the rate at which we can interact with new information. In 2012, a prosthetic chip was invented that uses electrodes to expand one’s memory storage. Now, with biotechnology predicted to move more quickly in 2016 and Google ready to back more companies in biotechnology, it may be possible to augment or program selective photographic memory. This is just an example of what one could imagine and begin working with, when combining electronics and gene editing. Many big breakthroughs in enhanced intelligence could be achieved in the future. The implications for business professionals, scientists, and the progress of technology would be astounding if upgrades like these were available. Personally, I can’t wait for the day when me and my personal A.I. through my Google Glass or some sort of eye wear or ear piece could read my brainwaves so I can type and do all my work through what would be a virtual form of telepathy. I could store everything I will need later instantly in the cloud and exactly where I want on my computer, there would be almost no delay because, well, how could there be? Time is everything.

Read more

At MIT, researchers have developed a stretchable bandage-like device capable of sensing skin temperature, delivering drugs transdermally, and containing electronics that include LED lights for displaying information. The various components of the system are designed to work together, for example the drug dispenser activating only when skin temperature is within a certain range and the LEDs lighting up when the drug reservoirs are running low. While this is only a prototype device, it certainly points toward future flexible devices that stay attached to a person’s skin, or even internally, for extended periods of time while providing health data and taking therapeutic actions in an intelligent way.

The device is based on a stretchable hydrogel matrix that reliably holds onto embedded metallic components linked by pliable wires. The hydrogel was made to have a stiffness similar to human soft tissues so that it blends well with the body when attached to it. When wires, drug reservoirs, delivery channels, and electronic components were built-in, the team tested the stretchiness of the final result showing that it maintains functionality even after repeated stress.

Read more

MOUNTAIN VIEW, Calif. — Google Life Sciences, the Silicon Valley giant’s new foray into health and medicine, announced a new name Monday that slips easily off the tongue but might sound antiquated to a high-tech, life-sciences ear: Verily.

“Verily, I swear,” as Shakespeare wrote in Henry VIII.

The word means “truly” or “certainly.” It dates back to 13th century Middle English and fell out of common use … well, a while ago. It often pops up, however, in the still very popular King James Bible.

Read more

Exciting news as another group proposes to explore telomerase therapy for the Cardio Vascular system. This no doubt follows on from DePhino et al work on the P53-telomerase-PCG-1 aging axis work which showed the effects of short telomeres on vascular aging (and other organs) and its direct link to Mitochondrial function and Stem cell Decline via the P53-telomerase-PCG-1 aging axis.

Read more

After recent good news regarding the accuracy of famed CRISPR-Cas9, a new form has been engineered that’s even more accurate than the original.

A string of positive developments

If you’ve been reading the news lately, you may know recent analysis of the gene editing system CRISPR-Cas9 has had a string of positive updates. We found out it’s surprisingly more accurate than we first believed, which bodes well as scientists across the world start thinking about the move into human models.

Read more

To most of the scientific community, “anti-aging” is a dirty word.

A medical field historically associated with charlatans and quacks, scientists have strictly restricted the quest for a “longevity pill” to basic research. The paradigm is simple and one-toned: working on model organisms by manipulating different genes and proteins, scientists slowly tease out the molecular mechanisms that lead to — and reverse — signs of aging, with no guarantee that they’ll work in humans.

longer-life-in-a-pill-41But it’s been a fruitful search: multiple drug candidates, many already on the market for immune or psychiatric disorders, have consistently delayed age-associated diseases and stretched the lifespan of fruit flies, roundworms and mice. Yet human trials have been far beyond reach — without the FDA acknowledging “aging” as a legitimate target for drug development, researchers have had no way of pitching clinical trials to the regulatory agency.

Read more

In a breakthrough that could lead to printable organs and an enhanced understanding of human physiology, researchers from Lawrence Livermore National Labs have 3D-printed functional blood vessels that look and function like the real thing.

3D bioprinters are similar to conventional 3D printers, but instead of using inert materials, they use “bio-ink:” basic structural building blocks that are compatible with the human body.

Read more