Toggle light / dark theme

If you ever swore to yourself (or to another) that you’d never get a tattoo, you may just want to reconsider. You may within just a couple of years have a very good reason to get one made out of “nanoink”.

As recently reported on Discovery News, “nanoink” allows for monitoring blood glucose in real-time right under the skin. It does so by using a hydrophobic nanoparticle that changes colors as glucose levels rise and fall. The ink consists of a glucose-detecting molecule, a color changing dye and a molecule that mimics glucose. These three particles continuously swish around inside a 120-nm orb. When glucose is present, the glucose-detecting molecule attaches and glows yellow; if absent, the ink turns orange.

The use of this technology has the advantage over traditional glucose monitoring, of course, in that there is a one-time needle stick for placing the tattoo over the tens of thousands of sticks that a diabetic will need to have over a lifetime.

Another advantage of nanoink tattooing: they can be removed. At least one researcher from Brown University has developed tattoo ink with microencapsulated beads coated with a polymer that when broken with a single laser treatment can simply be expelled from the body, as opposed to multiple laser removal treatments for conventional tattoos.

Diabetes isn’t the only disease candidate for using this technology. The original research involving nanoink tattoos was for monitoring sodium levels in the body, but then it occurred to researchers that glucose could be infinitely more useful as a disease target. The potential uses for “nanoink” as a monitoring technology are almost limitless; for chronic disease monitoring, once the concept can be proven to work for more complex molecules such as glucose, almost any disease could be monitored from heart disease to hyperthyroid to various blood disorders.

According to the researchers at Draper Laboratories studying this technology, the tattoo doesn’t have to be a huge Tweety bird on your ankle or heart on your shoulder; in fact, according to one of the Draper researchers, the tattoo could be just a “few millimeters in size and wouldn’t have to go as deep as a normal tattoo”.
Disease monitoring nano-tattoos, therefore, can be both tiny and painless. Of course, they could be stylish, too, but the nanoink is likely to cost a pretty penny—so before you are imagine a giant tribal arm stamp to monitor your heart disease, you may have to think again.

It may be at least two years before tattoos for monitoring your diabetes are available on the market—so unfortunately, those strips and sticking of fingers and thumbs aren’t going away for diabetics any time soon. But hopefully, someday in the not so distant future, nanotechnology will make the quality of life just a little bit better for diabetics and perhaps improve the disease management for other chronic diseases like heart disease and others as well. In the meantime, you can dream up what you want your “nanoink” tattoo to look like.

Summer Johnson, PhD
Column Editor, Lifeboat Foundation
Executive Managing Editor, The American Journal of Bioethics

Over 300 Women Share Experiences, Treatments for Painful, Common Chronic Conditions

CureTogether, a Health 2.0 Startup based in Silicon Valley, has released the first crowdsourced books on vulvodynia and endometriosis: two common, poorly understood conditions causing daily pain for millions of women. Assembled from the input of 190 and 137 women living with these respective conditions, “Vulvodynia Heroes” and “Endometriosis Heroes” are the product of an ongoing online research study at http://www.curetogether.com.

“Patients came together and decided what symptoms and treatments they wanted to track. They went on to diligently gather detailed, quantitative data on their bodies and experiences,” said Alexandra Carmichael, co-Founder of CureTogether. “The hope of this book is to spread awareness, reach out to people in pain who may not have heard of endometriosis, and increase interest and funding for future research.”

“These heroes are pioneers not just in investigating their own condition, but in developing self-cure practices that others can follow.”, said Gary Wolf, Contributing Editor of Wired and Blogger at The Quantified Self. “Many other women who are suffering will find this very helpful and inspiring,” said Elizabeth Rummer, MSPT at the Pelvic Health and Rehabilitation Center in San Francisco. A patient with endometriosis added, “This is great. I am just starting to really appreciate what awesome power CureTogether can have.”

Endometriosis is a painful chronic condition that affects 5–10% of women, and vulvodyna affects up to 16% of women at some point in their lives. They are two of the most active condition communities at CureTogether, with information about symptoms, treatments, and causes added by over 300 women. The books are available at http://www.curetogether.com/VHeroes and http://www.curetogether.com/EHeroes.

About CureTogether

CureTogether launched in 2008 to help people anonymously track and compare health data — to better understand their bodies, make more informed treatment decisions and contribute data to research. Starting with 3 conditions (Migraine, Endometriosis and Vulvodynia), its members have since expanded it to support 228 conditions.

*Please note that the information in Vulvodynia Heroes and Endometriosis Heroes and at CureTogether.com does not constitute medical advice.

For more information, please contact Alexandra Carmichael at 650−533−2163 or [email protected]

Tracking your health is a growing phenomenon. People have historically measured and recorded their health using simple tools: a pencil, paper, a watch and a scale. But with custom spreadsheets, streaming wifi gadgets, and a new generation of people open to sharing information, this tracking is moving online. Pew Internet reports that 70–80% of Internet users go online for health reasons, and Health 2.0 websites are popping up to meet the demand.

David Shatto, an online health enthusiast, wrote in to CureTogether, a health-tracking website, with a common question: “I’m ‘healthy’ but would be interested in tracking my health online. Not sure what this means, or what a ‘healthy’ person should track. What do you recommend?”

There are probably as many answers to this question as there are people who track themselves. The basic measure that apply to most people are:
- sleep
- weight
- calories
- exercise
People who have an illness or condition will also measure things like pain levels, pain frequency, temperature, blood pressure, day of cycle (for women), and results of blood and other biometric tests. Athletes track heart rate, distance, time, speed, location, reps, and other workout-related measures.

Another answer to this question comes from Karina, who writes on Facebook: “It’s just something I do, and need to do, and it’s part of my life. So, in a nutshell, on most days I write down what I ate and drank, how many steps I walked, when I went to bed and when I woke up, my workouts and my pain/medication/treatments. I also write down various comments about meditative activities and, if it’s extreme, my mood.”

David’s question is being asked by the media too. Thomas Goetz, deputy editor of Wired Magazine, writes about it in his blog The Decision Tree. Jamin Brophy-Warren recently wrote about the phenomenon of personal data collection in the Wall Street Journal, calling it the “New Examined Life”. Writers and visionaries Kevin Kelly and Gary Wolf have started a growing movement called The Quantified Self, which holds monthly meetings about self-tracking activities and devices. And self-experimenters like David Ewing Duncan (aka “Experimental Man”) and Seth Roberts (of the “Shangri-La Diet”) are writing books about their experiences.

In the end, what to track really depends on what each person wants to get out of it:
- Greater self-awareness and a way to stick to New Year’s resolutions?
- Comparing data to other self-trackers to see where you fit on the health curve?
- Contributing health data to research into finding cures for chronic conditions?

Based on answers to these questions, you can come up with your own list of things to track, or take some of the ideas listed above. Whatever the reason, tracking is the new thing to do online and can be a great way to optimize and improve your health.

Alexandra Carmichael is co-founder of CureTogether, a Mountain View, CA startup that launched in 2008 to help people optimize their health by anonymously comparing symptoms, treatments, and health data. Its members track their health online and share their experience with 186 different health conditions. She is also the author of The Collective Well and Ecnalab blogs, and a guest blogger at the Quantified Self.

I wrote an essay on the theme of the possibility of artificial initiation and fusion explosion of giants planets and other objects of Solar system. It is not a scientific article, but an atempt to collect all nesessary information about this existential risk. I conclude that it could not be ruled out as technical possibility, and could be made later as act of space war, which could clean entire Solar system.

Where are some events which are very improbable, but which consequence could be infinitely large (e.g. black holes on LHC.) Possibility of nuclear ignition of self-containing fusion reaction in giant planets like Jupiter and Saturn which could lead to the explosion of the planet, is one of them.

Inside the giant planets is thermonuclear fuel under high pressure and at high density. This density for certain substances is above (except water, perhaps) than the density of these substances on Earth. Large quantities of the substance would not have fly away from reaction zone long enough for large energy relize. This fuel has never been involved in fusion reactions, and it remained easy combustible components, namely, deuterium, helium-3 and lithium, which have burned at all in the stars. In addition, the subsoil giant planets contain fuel for reactions, which may prompt an explosive fire — namely, the tri-helium reaction (3 He 4 = C12) and for reactions to the accession of hydrogen to oxygen, which, however, required to start them much higher temperature. Substance in the bowels of the giant planets is a degenerate form of a metal sea, just as the substance of white dwarfs, which regularly takes place explosive thermonuclear burning in the form of helium flashes and the flashes of the first type of supernova.
The more opaque is environment, the greater are the chances for the reaction to it, as well as less scattering, but in the bowels of the giant planets there are many impurities and can be expected to lower transparency. Gravitational differentiation and chemical reactions can lead to the allocation of areas within the planet that is more suitable to run the reaction in its initial stages.

The stronger will be an explosion of fuse, the greater will be amount of the initial field of burning, and the more likely that the response would be self-sustaining, as the energy loss will be smaller and the number of reaction substances and reaction times greater. It can be assumed that if at sufficiently powerful fuse the reaction will became self-sustaining.

Recently Galileo spacecraft was drawn in the Jupiter. Galileo has nuclear pellets with plutonium-238 which under some assumption could undergo chain reaction and lead to nuclear explosion. It is interesting to understand if it could lead to the explosion of giant planet. Spacecraft Cassini may soon enter Saturn with unknown consequences. In the future deliberate ignition of giant planet may become a mean of space war. Such event could sterilize entire Solar system.

Scientific basis for our study could be found in the article “Necessary conditions for the initiation and propagation of nuclear detonation waves in plane atmospheras”.
Tomas Weaver and A. Wood, Physical review 20 – 1 Jule 1979,
http://www.lhcdefense.org/pdf/LHC%20-%20Sancho%20v.%20Doe%20…tion-1.pdf

It rejected the possibility of extending the thermonuclear detonation in the Earth’s atmosphere in Earth’s oceans to balance the loss of radiation (one that does not exclude the possibility of reactions, which take little space comparing the amount of earthly matter — but it’s enough to disastrous consequences and human extinction.)

There it is said: “We, therefore, conclude that thermonuclear-detonation waves cannot propagate in the terrestrial ocean by any mechanism by an astronomically large margin.

It is worth noting, in conclusion, that the susceptability to thermonuclear detonation of a large body of hydrogenous material is an ex¬ceedingly sensitive function of its isotopic com¬position, and, specifically, to the deuterium atom fraction, as is implicit in the discussion just preceding. If, for instance, the terrestrial oceans contained deuterium at any atom fraction greater than 1:300 (instead of the actual value of 1: 6000), the ocean could propagate an equilibrium thermonuclear-detonation wave at a temperature £2 keV (although a fantastic 10**30 ergs—2 × 10**7 MT, or the total amount of solar energy incident on the Earth for a two-week period—would be required to initiate such a detonation at a deuter¬*ium concentration of 1: 300). Now a non-neg-ligible fraction of the matter in our own galaxy exists at temperatures much less than 300 °K, i.e., the gas-giant planets of our stellar system, nebulas, etc. Furthermore, it is well known that thermodynamically-governed isotopic fractionation ever more strongly favors higher relative concentration of deuterium as the temperature decreases, e.g., the D:H concentration ratio in the ~10**2 К Great Nebula in Orion is about 1:200.45 Finally, orbital velocities of matter about the galactic center of mass are of the order of 3 × 10**7 cm /sec at our distance from the galactic core.

It is thus quite conceivable that hydrogenous matter (e.go, CH4, NH3, H2O, or just H2) relatively rich in deuterium (1 at. %) could accumulate at its normal, zero-pressure density in substantial thicknesses or planetary surfaces, and such layering might even be a fairly common feature of the colder, gas-giant planets. If thereby highly enriched in deuterium (£10 at. %), thermonuclear detonation of such layers could be initiated artificially with attainable nuclear explosives. Even with deuterium atom fractions approaching 0.3 at. % (less than that observed over multiparsec scales in Orion), however, such layers might be initiated into propagating thermonuclear detonation by the impact of large (diam 10**2 m), ultra-high velocity (^Зх 10**7 cm/sec) meteors or comets originating from nearer the galactic center. Such events, though exceedingly rare, would be spectacularly visible on distance scales of many parsecs.”

Full text of my essay is here: http://www.scribd.com/doc/8299748/Giant-planets-ignition

November 14, 2008
Computer History Museum, Mountain View, CA

http://ieet.org/index.php/IEET/eventinfo/ieet20081114/

Organized by: Institute for Ethics and Emerging Technologies, the Center for Responsible Nanotechnology and the Lifeboat Foundation

A day-long seminar on threats to the future of humanity, natural and man-made, and the pro-active steps we can take to reduce these risks and build a more resilient civilization. Seminar participants are strongly encouraged to pre-order and review the Global Catastrophic Risks volume edited by Nick Bostrom and Milan Cirkovic, and contributed to by some of the faculty for this seminar.

This seminar will precede the futurist mega-gathering Convergence 08, November 15–16 at the same venue, which is co-sponsored by the IEET, Humanity Plus (World Transhumanist Association), the Singularity Institute for Artificial Intelligence, the Immortality Institute, the Foresight Institute, the Long Now Foundation, the Methuselah Foundation, the Millenium Project, Reason Foundation and the Accelerating Studies Foundation.

SEMINAR FACULTY

  • Nick Bostrom Ph.D., Director, Future of Humanity Institute, Oxford University
  • Jamais Cascio, research affiliate, Institute for the Future
  • James J. Hughes Ph.D., Exec. Director, Institute for Ethics and Emerging Technologies
  • Mike Treder, Executive Director, Center for Responsible Nanotechnology
  • Eliezer Yudkowsky, Research Associate. Singularity Institute for Artificial Intelligence
  • William Potter Ph.D., Director, James Martin Center for Nonproliferation Studies

REGISTRATION:
Before Nov 1: $100
After Nov 1 and at the door: $150

Open source has emerged as a powerful set of principles for solving complex problems in fields as diverse as education and physical security. With roughly 60 million Americans suffering from a chronic health condition, traditional research progressing slowly, and personalized medicine on the horizon, the time is right to apply open source to health research. Advances in technology enabling cheap, massive data collection combined with the emerging phenomena of self quantification and crowdsourcing make this plan feasible today. We can all work together to cure disease, and here’s how.

Read more…

Following is a discussion of two potential threats to humanity – one which has existed for eons, the second we have seen recently resurfacing having thought it had been laid to rest.

First, a recent story on PhysOrg describes the work researchers at Vanderbilt University have performed in isolating antibodies from elderly people who had survived the 1918 flu pandemic. This comes three years after researchers at Mount Sinai and the Armed Forces Institute of Pathology in Washington, D.C isolated the same virus which caused this outbreak from the frozen bodies of people in Alaska who had died in the pandemic.

In addition to being an impressive achievement of biomedical science, which involved isolating antibody-secreting B cells from donors and generating “immortalized” cell lines to produce large amounts of antibodies, this research also demonstrates the amazing memory the immune system has (90 years!), as well as the ability scientists have to use tissue samples from people born nearly a century ago and fashion them into a potential weapon against future similar outbreaks. Indeed, these manufactured antibodies proved effective against 1918 flu virus when tested in mice.

Furthermore, such research provides tools which could help generate antibodies to treat other viruses which still blight humanity (such as HIV) or are seen as potential threats, such as avian influenza.

http://www.physorg.com/news138198336.html

Second, nuclear annihilation. Russia’s recent foray into Georgia and the ensuing tensions with the west have brought the specter of the cold war back from the dead, and with it increasing levels of aggressive rhetoric from both sides and more or less veiled threats of action, some of it diplomatic, some military.

During the past twenty years, ever since the fall of the former Soviet Union, we have become used to living in a world no longer directly and overtly threatened by complete annihilation through world war III. Is this about to change? It would seem that despite current tensions, present conditions are far from fostering a renewed cold war.

Modern day Russia (and China can be described along similar lines) is inexorably tied to the world economy and does not represent a conflicting ideology striving for world domination as was the case during the most of the latter half of the twentieth century. This deep international integration stems from the almost global acceptance of the market economy as the preferred driving force for economic growth, albeit under different forms of government. Both Russia and China are (currently) fueled more by the will being recognized as premier global forces rather than the will to rule the world, the former wishing to return to its previous position and reclaim the respect it feels it lost during the last couple of decades, and the latter rising anew after centuries in the shadows.

Of course, the coming elections in the US may change the tone prevalent in the international brinkmanship game, although the involvement of the EU, led by French premier Sarkozy means that such strong statements coming from Western Europe are not set to change fundamentally.

So, unless further surprises are in store for us (a possibility which cannot be ignored when dealing with political and military maneuvering, especially those involving the tense conditions prevalent in many of the former Soviet republics), a compromise will eventually be reached and respected. The seeds of a calming effort have already been felt in recent days with much less inflammatory declarations from both sides, and signs of a Russian willingness to tone down at least the public face of disagreements with the EU and US. This is likely set to continue…at least until the next outbreak of nationalistic violence or political sword-brandishing in a region in which tensions run high.

An interesting analysis of the current situation can be found at: http://www.cnn.com/2008/WORLD/europe/08/29/oakley.eu.russia/

Researchers have devised a rapid and efficient method for generating protein sentinels of the immune system, called monoclonal antibodies, which mark and neutralize foreign invaders.

For both ethical and practical reasons, monoclonals are usually made in mice. And that’s a problem, because the human immune system recognizes the mouse proteins as foreign and sometimes attacks them instead. The result can be an allergic reaction, and sometimes even death.

To get around that problem, researchers now “humanize” the antibodies, replacing some or all of mouse-derived pieces with human ones.

Wilson and Ahmed were interested in the immune response to vaccination. Conventional wisdom held that the B-cell response would be dominated by “memory” B cells. But as the study authors monitored individuals vaccinated against influenza, they found that a different population of B cells peaked about one week after vaccination, and then disappeared, before the memory cells kicked in. This population of cells, called antibody-secreting plasma cells (ASCs), is highly enriched for cells that target the vaccine, with vaccine-specific cells accounting for nearly 70 percent of all ASCs.

“That’s the trick,” said Wilson. “So instead of one cell in 1,000 binding to the vaccines, now it is seven in 10 cells.”

All of a sudden, the researchers had access to a highly enriched pool of antibody-secreting cells, something that is relatively easy to produce in mice, but hard to come by for human B cells.

To ramp up the production and cloning of these antibodies, the researchers added a second twist. Mouse monoclonal antibodies are traditionally produced in the lab from hybridomas, which are cell lines made by fusing the antibody-producing cell with a cancer cell. But human cells don’t respond well to this treatment. So Wilson and his colleagues isolated the ASC antibody genes and transferred them into an “immortalized” cell line. The result was the generation of more than 100 different monoclonals in less than a year, with each taking just a few weeks to produce.

In the event of an emerging flu pandemic, for instance, this approach could lead to faster production of human monoclonals to both diagnose and protect against the disease.

Journal Nature article: Rapid cloning of high-affinity human monoclonal antibodies against influenza virus

Nature 453, 667–671 (29 May 2008) | doi:10.1038/nature06890; Received 16 October 2007; Accepted 4 March 2008; Published online 30 April 2008

Pre-existing neutralizing antibody provides the first line of defence against pathogens in general. For influenza virus, annual vaccinations are given to maintain protective levels of antibody against the currently circulating strains. Here we report that after booster vaccination there was a rapid and robust influenza-specific IgG+ antibody-secreting plasma cell (ASC) response that peaked at approximately day 7 and accounted for up to 6% of peripheral blood B cells. These ASCs could be distinguished from influenza-specific IgG+ memory B cells that peaked 14–21 days after vaccination and averaged 1% of all B cells. Importantly, as much as 80% of ASCs purified at the peak of the response were influenza specific. This ASC response was characterized by a highly restricted B-cell receptor (BCR) repertoire that in some donors was dominated by only a few B-cell clones. This pauci-clonal response, however, showed extensive intraclonal diversification from accumulated somatic mutations. We used the immunoglobulin variable regions isolated from sorted single ASCs to produce over 50 human monoclonal antibodies (mAbs) that bound to the three influenza vaccine strains with high affinity. This strategy demonstrates that we can generate multiple high-affinity mAbs from humans within a month after vaccination. The panel of influenza-virus-specific human mAbs allowed us to address the issue of original antigenic sin (OAS): the phenomenon where the induced antibody shows higher affinity to a previously encountered influenza virus strain compared with the virus strain present in the vaccine1. However, we found that most of the influenza-virus-specific mAbs showed the highest affinity for the current vaccine strain. Thus, OAS does not seem to be a common occurrence in normal, healthy adults receiving influenza vaccination.

What is metabolomics?

Genes are similar to the plans for a house; they show what it looks like, but not what people are getting up to inside. One way of getting a snapshot of their lives would be to rummage through their rubbish, and that is pretty much what metabolomics does. […]

Metabolomics studies metabolites, the by-products of the hundreds of thousands of chemical reactions that continuously go on in every cell of the human body. Because blood and urine are packed with these compounds, it should be possible to detect and analyse them. If, say, a tumour was growing somewhere then, long before any existing methods can detect it, the combination of metabolites from the dividing cancer cells will produce a new pattern, different from that seen in healthy tissue. Such metabolic changes could be picked up by computer programs, adapted from those credit-card companies use to detect crime by spotting sudden and unusual spending patterns amid millions of ordinary transactions.

This could be used for traditional medicine, both to prevent pathologies and to detect those that are already present so they can be treated. But another use would be as part of an early-detection system to defend against pandemics and biological attacks. As mentioned previously, network-theory can help us better use vaccines. But once you have a cure or antidote, you also need to identify people that are already infected but haven’t died yet, and the earlier you can do that after the infection, the more chances they have to live.

Once the techniques of metabolomics are sufficiently advanced and inexpensive to use, they might provide better data than simply relying on reported symptoms (might be too late by then), and might scale better than traditional detection methods (not sure yet — something else might make more economic sense). It’s a bit too early to tell, but it’s a very promising field.

For more information, see Douglas Kell’s site or Wikipedia: Metabolomics.

Source: The Economist. See also Lifeboat’s BioShield program.

If a pandemic strikes and hundreds of millions are at risk, we won’t have enough vaccines for everybody, at least not within the time window where vaccines would help. But a new strategy could help use the vaccines we have more effectively:

Researchers are now proposing a new strategy for targeting shots that could, at least in theory, stop a pandemic from spreading along the network of social interactions. Vaccinating selected people is essentially equivalent to cutting out nodes of the social network. As far as the pandemic is concerned, it’s as if those people no longer exist. The team’s idea is to single out people so that immunizing them breaks up the network into smaller parts of roughly equal sizes. Computer simulations show that this strategy could block a pandemic using 5 to 50 percent fewer doses than existing strategies, the researchers write in an upcoming Physical Review Letters.

vaccine-targeting.jpg

So you break up the general social network into sub-networks, and then you target the most important nodes of these sub-networks and so on until you run out of vaccines. The challenge will be to get good information about social networks, something not quite as easy as mapping computer networks, but there is progress on that front.

In one of the most dramatic illustrations of their technique, the researchers simulated the spread of a pandemic using data from a Swedish study of social connections, in which more than 310,000 people are represented and connected based on whether they live in the same household or they work in the same place. With the new method, the epidemic spread to about 4 percent of the population, compared to nearly 40 percent for more standard strategies, the team reports.

Source: ScienceNews. See also Lifeboat’s BioShield program.