Toggle light / dark theme

Michio Kaku, Gregory Stack, And Yue Shao: Synthetic Human Embryos And Genetic Engineering [Opinion]

Michio Kaku and Gregory Scott discuss different aspects of genetic engineering in the video below. According to Kaku and Scott, parents will soon have different genetic engineering choices to make about their children. In addition, recent discoveries by Yue Shao have yielded a new classification of parentless synthetic human embryos.

With Yue Shao’s discovery, genetic engineers might be learning to grow synthetic human embryos from anonymous stem cells donated from IVF clinics. How far this genetic engineering technology goes remains to be seen.

Michio Kaku and Gregory Scott speak about the ethical concerns of genetic engineering in the Michio Kaku video below beginning at the 29-minute mark. However, Yue Shao’s statements to MIT about the accidental discovery of how to engineer synthetic human embryos out of stem cells raises more ethical concerns.

Creating Human Beings from Skin Cells Is Possible

Stem cell research is one of my absolute favorite topics. This amazing field does not only reveal to us how our bodies function and develop, but also holds promising future applications that could help us treat severe diseases, which would not be treated otherwise. However, stem cell research can do more than just treat diseases. In this article, I will highlight the latest scientific breakthroughs to show you how we can turn a simple skin cell into a fully-grown genetically-engineered human being all thanks to the power of stem cells and genetic engineering.

Desperate times call for desperate measures

The field of stem cell research began in 1981 with the discovery of the embryonic stem cells by Martin Evans at Cardiff University, UK. In 1998, stem cells research became a hot topic in the mainstream media after scientists isolated human embryonic stem cells and grew them in the lab for the first time. Due to this breakthrough, stem cell research faced a lot of resistance from the general public. It raised questions about life, consciousness and human rights. At what point does one consider life to begin? If an embryo can develop into an individual, is it justifiable to destroy it or even use it for scientific research? This led the U.S. government to limit the federal funding of research on human embryonic stem cells because these embryos were destroyed in the process.

Scientists create world’s first ‘molecular robot’ capable of building molecules

Scientists at The University of Manchester have created the world’s first ‘molecular robot’ that is capable of performing basic tasks including building other molecules. The tiny robots, which are a millionth of a millimetre in size, can be programmed to move and build molecular cargo, using a tiny robotic arm.

Each individual robot is capable of manipulating a single molecule and is made up of just 150 carbon, hydrogen, oxygen and nitrogen atoms. To put that size into context, a billion billion of these robots piled on top of each other would still only be the same size as a single grain of salt. The robots operate by carrying out chemical reactions in special solutions which can then be controlled and programmed by scientists to perform the basic tasks.

In the future such robots could be used for medical purposes, advanced manufacturing processes and even building molecular factories and assembly lines. The research will be published in Nature on Thursday 21st September.

Malicious code written into DNA infects the computer that reads it

In a mind-boggling world first, a team of biologists and security researchers have successfully infected a computer with a malicious program coded into a strand of DNA.

It sounds like science fiction, but I assure you it’s quite real — although you probably don’t have to worry about this particular threat vector any time soon. That said, the possibilities suggested by this project are equally fascinating and terrifying to contemplate.

The multidisciplinary team at the University of Washington isn’t out to make outlandish headlines, although it’s certainly done that. They were concerned that the security infrastructure around DNA transcription and analysis was inadequate, having found elementary vulnerabilities in open-source software used in labs around the world. Given the nature of the data usually being handled, this could be a serious problem going forward.