Toggle light / dark theme

I’ve been reading Ramez Naam’s fantastic book “Nexus,” which is set in a near-future where a powerful nano-drug allows human minds to connect together. In the story, a group of enterprising neuroscientists and engineers discover they can use the drug in a new way — to run a computer operating system inside their brains. Naam’s characters telepathically communicate with each other using a mental chat app and even manipulate other people’s bodies by gaining control of their brains’ operating systems.

Sounds far-fetched, right?

It might not be as far-fetched as you think. From connecting a human brain to a basic tablet to help a paralyzed patient communicate with the outside world to memory-boosting brain implants and a prototype computer chip that runs on live neurons — the real world progress we’re seeing today is nearly as strange as fiction.

Read more

The new BMI stentrode came from the research on sheep; nice to know for the next Trivia night at the local pub.


A group of Australian and American researchers have used sheep to develop and test a new device (original paper) – the stentrode – for recording electrical signals from inside the brain. The research was published in Nature Biotechnology. This new technology removes one of the main obstacles to developing efficient brain-computer interfaces: the need for invasive surgery.

The “stentrode” is a group of small (750 µm) recording electrodes attached to an intracranial endovascular stent, which allows implantation of the electrodes inside the brain without invasive surgery. This allows high quality recording or stimulation of specific areas of the brain, without many of the risks associated with invasive brain surgery.

Read more

Watching DNA self-repair itself.


After 2015’s Nobel Prize in chemistry was awarded for advancements in our understanding of DNA repair, a recent Nature report characterises the mechanism in molecular detail. The implications for cancer research are vast.

Researchers in Paris, France, and Bristol, England, have leveraged recent advances in microscopy and fluorescent imaging to characterise the entire process of DNA repair at the molecular level. They were able to observe RNA polymerase, which ‘reads’ DNA and initiates its replication, as it moved along the DNA strand.

When it encountered damage inflicted by UV radiation, the enzyme stalled, and a number of proteins descended on the site. The team followed them as they acted in an ordered step-wise fashion and elucidated the critical steps of the DNA repair process: first, a protein called Mfd coordinates to RNA polymerase, then it directs a sort of relay team of UvrA, UvrB and UvrC. This deeper understanding of the mechanism could bolster efforts towards treatments for a variety of conditions.

Read more

A few weeks ago, up to 40 people from the Yamal Peninsula in Siberia were hospitalized after a heatwave thawed permafrost, releasing a “zombie outbreak” of anthrax. Now, the Siberian Times reports that experts fear the thawing could spell the return of the eradicated smallpox virus.

During the 1800s, there were repeated outbreaks of smallpox in a small Siberian town, with hundreds of bodies buried near the banks of the Kolyma River. Some 120 years later, this summer’s heatwave has been melting the permafrost surrounding the town at a rate three times faster than usual. This has increased water levels in the river and is subsequently eroding away its banks where the bodies are buried.

While the risk at the moment is low, and with scientists aware of the issue for some time now, the current troubles of permafrost around the site and the Kolyma River are ringing alarms.

Read more

How will we interact with the intelligent machines of the future? If you’re asking Bryan Johnson, founder of startup Kernel, he’ll tell you those machines should be implanted inside our brains.

His team is working with top neuroscientists to build a tiny brain chip—also known as a neuroprosthetic —to help people with disease-related brain damage. In the long term, though, Johnson sees the product applicable to anyone who wants a bit of a brain boost.

Yes, some might flag this technology as yet another invention leading us toward a future where technology just helps the privileged get further in life.

Read more

A team of Harvard Medical School scientists, which includes genetics professor George Church, have designed a bacterial genome that has been rewritten on a massive scale, with changes in more than 62,000 spots.

They haven’t used it to make living E. coli yet, but the findings, reported today in Science, mark progress towards genetically engineered bacteria that could make new materials without risk of exchanging genes with organisms in the wild.

“It‘s an important step forward for demonstrating the malleability of the genetic code and how entirely new types of biological functions and properties can be extracted from organisms through genomes that have been recoded,” Farren Isaacs of Yale University, who has worked with the team in the past, told Nature.

Read more

Is Market Capitalism simply an accident of certain factors that came together in the 19th and 20th centuries? Does the innovation of economics require a new economics of innovation? Is the study of economics deeply affected by the incentive structures faced by economists themselves, necessitating a study of the “economics of economics”? In this broad ranging interview INET Senior Economist Pia Malaney sits down with Eric Weinstein — mathematician, economist, Managing Director of Thiel Capital (as well as her co-author and husband) to discuss these and other issues.

Underlying the seismic shifts in the economy in the last ten years, Dr. Weinstein sees not just a temporary recession brought on by a housing crisis, but rather deep and fundamental shifts in the very factors that made market capitalism the driving force of economic growth for the past two centuries. The most profound of these shifts as Dr. Weinstein sees it, is an end to 20th century style capitalism brought about not by a competing ideology, as many had once feared, but instead by changing technology. As production is driven increasingly by bits rather than atoms, he sees the importance of private goods give way to public goods, undermining a basic requirement of market models. In a different line of thinking, as software becomes increasingly sophisticated it takes on the ability to replace humans not only in low level repetitive tasks but also, with the use of deep learning algorithms, in arbitrarily complex repetitive tasks such as medical diagnosis.

Read more

August 19th, 2016 – Creative Peptides, a professional supplier of peptides manufacturing upon academic, clinical, commercial and government laboratories in diverse applications, has released its efficient Glycopeptide Synthesis service, to help speed up the advance in solid phase methods.

Nowadays, glycopeptides have played a pivotal role in a myriad of organisms and systems, such as biology, physiology, medicine, bioengineering and technology, etc. As is known, synthetic glycopeptides are able to offer an unique frontier for research in glycobiology and proteomics as well as for drug discovery & development, drug delivery & targeting, diagnostics development and biotechnological applications, which also promotes the development of modern biomarker discovery process.

Based on rapid achievements in peptides research, increasing number of scientists are trying to discover more effective methods in modern scientific research, such as deslorelin acetate, aviptadil acetate, Chimeric Peptides, and so on. Technically, the Glycan chains of glycopeptides are involved in numerous biological recognition events, including protein folding, cell-cell communication and adhesion, cell growth and differentiation, as well as bacterial and viral infection. Actually, a framework of probing human implicit intentions for the purpose of augmented cognition has been described at Creative Peptides in recent days, which helps more and more people gain new insights in peptide application.

Read more