Scientists are investigating a range of different delivery mechanisms for the gene-editing tool, from topical gels to skin grafts.

Stem cell research is one of my absolute favorite topics. This amazing field does not only reveal to us how our bodies function and develop, but also holds promising future applications that could help us treat severe diseases, which would not be treated otherwise. However, stem cell research can do more than just treat diseases. In this article, I will highlight the latest scientific breakthroughs to show you how we can turn a simple skin cell into a fully-grown genetically-engineered human being all thanks to the power of stem cells and genetic engineering.
Desperate times call for desperate measures
The field of stem cell research began in 1981 with the discovery of the embryonic stem cells by Martin Evans at Cardiff University, UK. In 1998, stem cells research became a hot topic in the mainstream media after scientists isolated human embryonic stem cells and grew them in the lab for the first time. Due to this breakthrough, stem cell research faced a lot of resistance from the general public. It raised questions about life, consciousness and human rights. At what point does one consider life to begin? If an embryo can develop into an individual, is it justifiable to destroy it or even use it for scientific research? This led the U.S. government to limit the federal funding of research on human embryonic stem cells because these embryos were destroyed in the process.
Scientists at The University of Manchester have created the world’s first ‘molecular robot’ that is capable of performing basic tasks including building other molecules. The tiny robots, which are a millionth of a millimetre in size, can be programmed to move and build molecular cargo, using a tiny robotic arm.
Each individual robot is capable of manipulating a single molecule and is made up of just 150 carbon, hydrogen, oxygen and nitrogen atoms. To put that size into context, a billion billion of these robots piled on top of each other would still only be the same size as a single grain of salt. The robots operate by carrying out chemical reactions in special solutions which can then be controlled and programmed by scientists to perform the basic tasks.
In the future such robots could be used for medical purposes, advanced manufacturing processes and even building molecular factories and assembly lines. The research will be published in Nature on Thursday 21st September.
In a mind-boggling world first, a team of biologists and security researchers have successfully infected a computer with a malicious program coded into a strand of DNA.
It sounds like science fiction, but I assure you it’s quite real — although you probably don’t have to worry about this particular threat vector any time soon. That said, the possibilities suggested by this project are equally fascinating and terrifying to contemplate.
The multidisciplinary team at the University of Washington isn’t out to make outlandish headlines, although it’s certainly done that. They were concerned that the security infrastructure around DNA transcription and analysis was inadequate, having found elementary vulnerabilities in open-source software used in labs around the world. Given the nature of the data usually being handled, this could be a serious problem going forward.
Summary: The Hygiene Hypothesis persuades people to consume parasitic worms as a way to treat chronic autoimmune disorders. As well, people eat tapeworms as a way to lose weight. Learn more about two closely related scientific beliefs called the “Hygiene Hypothesis” and the “Old Freinds Hypothesis.” Part 1 of a 2-part series. Cover photo: 3drenderings / Getty Images.
It’s difficult to believe, but thousands of people eat worms as a way to lose weight or cure diseases.
People don’t just eat worms on TV shows, like the Fear Factor. Some extreme dieters consume tapeworms as a way to lose weight. Another group of people ingests parasitic worms known as helminths to ward-off the debilitating symptoms of autoimmune diseases.