Toggle light / dark theme

Wet AMD Drugs Might Soon Be Self-Administered

A new way of administering drugs for wet age-related macular degeneration might be close.


Two studies by researchers at the University of Birmingham have shown that delivering drugs against the wet form of age-related macular degeneration (AMD) in the form of eyedrops might soon be possible in humans [1, 2].

What is age-related macular degeneration?

AMD is a pathology of the retina, which is a light-sensitive tissue located in the back of the eye and is similar to the film in a non-digital camera. Two-dimensional images are created on the retina and are subsequently transferred to the brain in the form of electrical neural impulses. Near the center of the retina is the macula, an oval-shaped region responsible for central, high-resolution, color vision. In AMD, the macula is damaged, impairing or preventing this kind of vision. AMD is progressive, but it cannot lead to total blindness, as it doesn’t affect peripheral vision. It comes in two forms, wet and dry, with the latter being overwhelmingly more common and, unfortunately, presently incurable. As the name suggests, the highest risk factor for AMD is age; the disease is usually observed only in patients over 50.

Tiny robot could be game-changer in fight against tuberculosis

Robots like this, nanobots that can work in the body, should be the main focus for curing all disease. And instead of focusing on Drug Delivery, have the nanobots just go in and attack or fix the problem themselves.


A Brock University research team has created a microscopic robot that has the potential to identify drug resistance to tuberculosis faster than conventional tests.

The World Health Organization (WHO) calls drug “a formidable obstacle” to treatment and prevention of a disease that killed 240,000 people in 2016.

The Brock team’s latest technology builds on an earlier version of the microscopic robot—called the three-dimensional DNA nanomachine—they created in 2016 to detect diseases in a blood sample within 30 minutes.

New American Particle Collider Gets Thumbs Up From National Academies of Sciences

A proposed billion-dollar American particle collider has received enthusiastic backing from the US National Academies of Sciences, Engineering, and Medicine, according to a newly released report.

This proposed “electron-ion collider,” or EIC, would serve as a state-of-the-art facility designed to answer some of the deepest questions about our Universe. The National Academies “finds a compelling scientific case for such a facility,” according to its report released today.

Artificial embryos are a step closer to becoming reality

LONDON — An international team of scientists has moved closer to creating artificial embryos after using mouse stem cells to make structures capable of taking a crucial step in the development of life.

Experts said the results suggested human embryos could be created in a similar way in future — a step that would allow scientists to use artificial embryos rather than real ones to research the very earliest stages of human development.

The team, led by Magdalena Zernicka-Goetz, a professor at Britain’s Cambridge University, had previously created a simpler structure resembling a mouse embryo in a lab dish. That work involved two types of stem cells and a three-dimensional scaffold on which they could grow.

A blood moon is coming

On Friday 27 July there will be a total lunar eclipse, also known as a blood moon. The blood moon occurs when the sun, Earth and moon align perfectly, putting the moon in the Earth’s shadow. The red colouring is a result of sunlight refracting through the Earth’s atmosphere.

Mice Reprogram Gut Tissue to a Fetal State to Heal Injury

A new study shows that mice reprogram their gut tissues to repair injury rolling them from an aged state back to a more fetal-like one.


Getting old is one thing; getting old in a healthy way is another. Many elderly people suffer from all kinds of diseases and disorders, ranging from cardiovascular problems and diabetes to Alzheimer’s and Parkinson’s disease. Wouldn’t it be nice if we could keep the body young as we grow older to prevent disease associated with old age? For instance, would it be possible to slow down or reverse the aging processes in the cells of our body?

This question has gained a lot of interest from scientists, and their research has led to the discovery of the important role that the shortening of telomeres, the protective caps on our DNA, plays in aging. While this has been described in recent posts on the LEAF blog, I would like to address another mechanism that has seen an interesting leap forward, more or less by accident: rejuvenation of tissue.

Rejuvenation is a term that has recently been used in the context of senolytics. These are newly discovered compounds that decrease the number of senescent cells in the body. For the purpose of this article, I define rejuvenation as the resetting of a genetic program within a cell or tissue, from adult back to fetal. Typically, cells develop from stem cells, which are cells that can differentiate into many different cell types. During cell differentiation, certain genetic programs in the stem cell are turned off, while others are turned on to make the formation of a specific cell type possible. During rejuvenation, this process is reversed: differentiated cells are reset to an embryonic state.

/* */